
## Mark C Leake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3216494/publications.pdf Version: 2024-02-01



MADE CLEAKE

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stoichiometry and turnover in single, functioning membrane protein complexes. Nature, 2006, 443, 355-358.                                                                                                                                               | 13.7 | 559       |
| 2  | Stoichiometry and Architecture of Active DNA Replication Machinery in <i>Escherichia coli</i> . Science, 2010, 328, 498-501.                                                                                                                            | 6.0  | 382       |
| 3  | Direct observation of steps in rotation of the bacterial flagellar motor. Nature, 2005, 437, 916-919.                                                                                                                                                   | 13.7 | 309       |
| 4  | Passive Stiffness Changes Caused by Upregulation of Compliant Titin Isoforms in Human Dilated<br>Cardiomyopathy Hearts. Circulation Research, 2004, 95, 708-716.                                                                                        | 2.0  | 300       |
| 5  | The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least<br>11. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103,<br>8066-8071.                                   | 3.3  | 254       |
| 6  | In Vivo Architecture and Action of Bacterial Structural Maintenance of Chromosome Proteins.<br>Science, 2012, 338, 528-531.                                                                                                                             | 6.0  | 253       |
| 7  | ATP-Dependent Dynamic Protein Aggregation Regulates Bacterial Dormancy Depth Critical for<br>Antibiotic Tolerance. Molecular Cell, 2019, 73, 143-156.e4.                                                                                                | 4.5  | 221       |
| 8  | Single-molecule fluorescence microscopy review: shedding new light on old problems. Bioscience<br>Reports, 2017, 37, .                                                                                                                                  | 1.1  | 219       |
| 9  | Developmentally Regulated Switching of Titin Size Alters Myofibrillar Stiffness in the Perinatal Heart.<br>Circulation Research, 2004, 94, 967-975.                                                                                                     | 2.0  | 177       |
| 10 | Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proceedings of the National<br>Academy of Sciences of the United States of America, 2010, 107, 11347-11351.                                                                   | 3.3  | 176       |
| 11 | Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by <i>in vivo</i> single-molecule imaging. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15376-15381. | 3.3  | 172       |
| 12 | Association of the Chaperone αB-crystallin with Titin in Heart Muscle. Journal of Biological Chemistry,<br>2004, 279, 7917-7924.                                                                                                                        | 1.6  | 147       |
| 13 | Single-molecule techniques in biophysics: a review of the progress in methods and applications.<br>Reports on Progress in Physics, 2018, 81, 024601.                                                                                                    | 8.1  | 136       |
| 14 | Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 811-824.                                                                 | 0.5  | 111       |
| 15 | From <i>Animaculum</i> to single molecules: 300 years of the light microscope. Open Biology, 2015, 5, 150019.                                                                                                                                           | 1.5  | 109       |
| 16 | Millisecond timescale slimfield imaging and automated quantification of single fluorescent protein<br>molecules for use in probing complex biological processes. Integrative Biology (United Kingdom),<br>2009, 1, 602.                                 | 0.6  | 108       |
| 17 | Damped elastic recoil of the titin spring in myofibrils of human myocardium. Proceedings of the<br>National Academy of Sciences of the United States of America, 2003, 100, 12688-12693.                                                                | 3.3  | 105       |
| 18 | Frequent exchange of the DNA polymerase during bacterial chromosome replication. ELife, 2017, 6, .                                                                                                                                                      | 2.8  | 101       |

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Inferring diffusion in single live cells at the single-molecule level. Philosophical Transactions of the<br>Royal Society B: Biological Sciences, 2013, 368, 20120029.                                                                                              | 1.8 | 100       |
| 20 | Clustering and dynamics of cytochrome <i>bd</i> â€l complexes in the <i>Escherichia coli</i> plasma<br>membrane <i>in vivo</i> . Molecular Microbiology, 2008, 70, 1397-1407.                                                                                       | 1.2 | 98        |
| 21 | Single-Organelle Quantification Reveals Stoichiometric and Structural Variability of Carboxysomes<br>Dependent on the Environment. Plant Cell, 2019, 31, 1648-1664.                                                                                                 | 3.1 | 98        |
| 22 | Transcription factor clusters regulate genes in eukaryotic cells. ELife, 2017, 6, .                                                                                                                                                                                 | 2.8 | 94        |
| 23 | The molecular elasticity of the insect flight muscle proteins projectin and kettin. Proceedings of the<br>National Academy of Sciences of the United States of America, 2006, 103, 4451-4456.                                                                       | 3.3 | 93        |
| 24 | Nonequivalence of Membrane Voltage and Ion-Gradient as Driving Forces for the Bacterial Flagellar<br>Motor at Low Load. Biophysical Journal, 2007, 93, 294-302.                                                                                                     | 0.2 | 93        |
| 25 | The Elasticity of Single Titin Molecules Using a Two-Bead Optical Tweezers Assay. Biophysical Journal, 2004, 87, 1112-1135.                                                                                                                                         | 0.2 | 89        |
| 26 | Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes. Methods, 2015, 88, 81-88.                                                                                                                    | 1.9 | 89        |
| 27 | Single-molecule imaging of DNA gyrase activity in living <i>Escherichia coli</i> . Nucleic Acids Research, 2019, 47, 210-220.                                                                                                                                       | 6.5 | 72        |
| 28 | A molecular brake, not a clutch, stops the <i>Rhodobacter sphaeroides</i> flagellar motor.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11582-11587.                                                              | 3.3 | 71        |
| 29 | Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time. Faraday Discussions, 2015, 184, 401-424. | 1.6 | 70        |
| 30 | Molecular coordination of Staphylococcus aureus cell division. ELife, 2018, 7, .                                                                                                                                                                                    | 2.8 | 69        |
| 31 | The physics of life: one molecule at a time. Philosophical Transactions of the Royal Society B:<br>Biological Sciences, 2013, 368, 20120248.                                                                                                                        | 1.8 | 67        |
| 32 | Localisation and interactions of theVipp1 protein in cyanobacteria. Molecular Microbiology, 2014, 94, 1179-1195.                                                                                                                                                    | 1.2 | 66        |
| 33 | Independent mobility of proteins and lipids in the plasma membrane of<br><scp><i>E</i></scp> <i>scherichia coli</i> . Molecular Microbiology, 2014, 92, 1142-1153.                                                                                                  | 1.2 | 65        |
| 34 | Fluorescence Measurement of Intracellular Sodium Concentration in Single Escherichia coli Cells.<br>Biophysical Journal, 2006, 90, 357-365.                                                                                                                         | 0.2 | 60        |
| 35 | Membraneless organelles formed by liquid-liquid phase separation increase bacterial fitness. Science Advances, 2021, 7, eabh2929.                                                                                                                                   | 4.7 | 55        |
| 36 | The elasticity of single kettin molecules using a two-bead laser-tweezers assay. FEBS Letters, 2003, 535, 55-60.                                                                                                                                                    | 1.3 | 54        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | B cell zone reticular cell microenvironments shape CXCL13 gradient formation. Nature Communications, 2020, 11, 3677.                                                                                   | 5.8 | 52        |
| 38 | Analytical tools for single-molecule fluorescence imaging in cellulo. Physical Chemistry Chemical Physics, 2014, 16, 12635-12647.                                                                      | 1.3 | 49        |
| 39 | Functioning Nanomachines Seen in Real-Time in Living Bacteria Using Single-Molecule and<br>Super-Resolution Fluorescence Imaging. International Journal of Molecular Sciences, 2011, 12,<br>2518-2542. | 1.8 | 48        |
| 40 | Experimental approaches for addressing fundamental biological questions in living, functioning cells with single molecule precision. Open Biology, 2012, 2, 120090.                                    | 1.5 | 48        |
| 41 | Single-molecule live cell imaging of Rep reveals the dynamic interplay between an accessory replicative helicase and the replisome. Nucleic Acids Research, 2019, 47, 6287-6298.                       | 6.5 | 48        |
| 42 | Mechanical properties of cardiac titin's N2B-region by single-molecule atomic force spectroscopy.<br>Journal of Structural Biology, 2006, 155, 263-272.                                                | 1.3 | 47        |
| 43 | Are <i>Escherichia coli</i> OXPHOS complexes concentrated in specialized zones within the plasma membrane?. Biochemical Society Transactions, 2008, 36, 1032-1036.                                     | 1.6 | 46        |
| 44 | The yeast Mig1 transcriptional repressor is dephosphorylated by glucose-dependent and -independent mechanisms. FEMS Microbiology Letters, 2017, 364, .                                                 | 0.7 | 42        |
| 45 | Rapid rotation of micron and submicron dielectric particles measured using optical tweezers. Journal of Modern Optics, 2003, 50, 1539-1554.                                                            | 0.6 | 36        |
| 46 | Amyloid-β oligomerization monitored by single-molecule stepwise photobleaching. Methods, 2021, 193,<br>80-95.                                                                                          | 1.9 | 35        |
| 47 | Multiple sources of passive stress relaxation in muscle fibres. Physics in Medicine and Biology, 2004, 49, 3613-3627.                                                                                  | 1.6 | 33        |
| 48 | High-Speed Single-Molecule Tracking of CXCL13 in the B-Follicle. Frontiers in Immunology, 2018, 9, 1073.                                                                                               | 2.2 | 33        |
| 49 | The Mechanism of Vesicle Solubilization by the Detergent Sodium Dodecyl Sulfate. Langmuir, 2020, 36, 11499-11507.                                                                                      | 1.6 | 28        |
| 50 | SerraNA: a program to determine nucleic acids elasticity from simulation data. Physical Chemistry<br>Chemical Physics, 2020, 22, 19254-19266.                                                          | 1.3 | 26        |
| 51 | Positioning of chemosensory proteins and <scp>FtsZ</scp> through the <i><scp>R</scp>hodobacter sphaeroides</i> cell cycle. Molecular Microbiology, 2013, 90, 322-337.                                  | 1.2 | 24        |
| 52 | Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer. Biochemical Society Transactions, 2015, 43, 139-145.                        | 1.6 | 24        |
| 53 | Shining the spotlight on functional molecular complexes. Communicative and Integrative Biology, 2010, 3, 415-418.                                                                                      | 0.6 | 23        |
| 54 | Towards mapping the 3D genome through high speed single-molecule tracking of functional transcription factors in single living cells. Methods, 2020, 170, 82-89.                                       | 1.9 | 23        |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Biophysical characterisation of DNA origami nanostructures reveals inaccessibility to intercalation binding sites. Nanotechnology, 2020, 31, 235605.                                                                                                                         | 1.3 | 23        |
| 56 | A glucose-starvation response governs endocytic trafficking and eisosomal retention of surface cargoes in budding yeast. Journal of Cell Science, 2021, 134, .                                                                                                               | 1.2 | 23        |
| 57 | The emergence of sequence-dependent structural motifs in stretched, torsionally constrained DNA.<br>Nucleic Acids Research, 2020, 48, 1748-1763.                                                                                                                             | 6.5 | 21        |
| 58 | Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents. Scientific Reports, 2019, 9, 12897.                                                                                                                                             | 1.6 | 20        |
| 59 | An automated image analysis framework for segmentation and division plane detection of single<br>live <i>Staphylococcus aureus</i> cells which can operate at millisecond sampling time scales using<br>bespoke Slimfield microscopy. Physical Biology, 2016, 13, 055002.    | 0.8 | 19        |
| 60 | <i>Staphylococcus aureus</i> toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration. FASEB Journal, 2019, 33, 3807-3824.                                                                                                           | 0.2 | 18        |
| 61 | Integration host factor bends and bridges DNA in a multiplicity of binding modes with varying specificity. Nucleic Acids Research, 2021, 49, 8684-8698.                                                                                                                      | 6.5 | 18        |
| 62 | Characterising Maturation of GFP and mCherry of Genomically Integrated Fusions in Saccharomyces cerevisiae. Bio-protocol, 2018, 8, e2710.                                                                                                                                    | 0.2 | 18        |
| 63 | Single molecule experimentation in biological physics: exploring the living component of soft condensed matter one molecule at a time. Journal of Physics Condensed Matter, 2011, 23, 503101.                                                                                | 0.7 | 16        |
| 64 | Single-Molecule Narrow-Field Microscopy of Protein–DNA Binding Dynamics in Glucose Signal<br>Transduction of Live Yeast Cells. Methods in Molecular Biology, 2016, 1431, 5-15.                                                                                               | 0.4 | 16        |
| 65 | Developing a New Biophysical Tool to Combine Magneto-Optical Tweezers with Super-Resolution Fluorescence Microscopy. Photonics, 2015, 2, 758-772.                                                                                                                            | 0.9 | 15        |
| 66 | Single-molecule studies of the dynamics and interactions of bacterial OXPHOS complexes. Biochimica<br>Et Biophysica Acta - Bioenergetics, 2016, 1857, 224-231.                                                                                                               | 0.5 | 15        |
| 67 | Single-Molecule Observation of DNA Replication Repair Pathways in E. coli. Advances in Experimental<br>Medicine and Biology, 2016, 915, 5-16.                                                                                                                                | 0.8 | 14        |
| 68 | Tween-20 Induces the Structural Remodeling of Single Lipid Vesicles. Journal of Physical Chemistry<br>Letters, 2022, 13, 5341-5350.                                                                                                                                          | 2.1 | 14        |
| 69 | PySTACHIO: Python Single-molecule TrAcking stoiCHiometry Intensity and simulatiOn, a flexible, extensible, beginner-friendly and optimized program for analysis of single-molecule microscopy data. Computational and Structural Biotechnology Journal, 2021, 19, 4049-4058. | 1.9 | 13        |
| 70 | Critical roles for EGFR and EGFR–HER2 clusters in EGF binding of SW620 human carcinoma cells.<br>Journal of the Royal Society Interface, 2022, 19, .                                                                                                                         | 1.5 | 13        |
| 71 | Correlating single-molecule characteristics of the yeast aquaglyceroporin Fps1 with environmental perturbations directly in living cells. Methods, 2021, 193, 46-53.                                                                                                         | 1.9 | 10        |
| 72 | Plasmonics, Tracking and Manipulating, and Living Cells: general discussion. Faraday Discussions, 2015, 184, 451-473.                                                                                                                                                        | 1.6 | 9         |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Systems biophysics: Single-molecule optical proteomics in single living cells. Current Opinion in<br>Systems Biology, 2018, 7, 26-35.                                                                                                                         | 1.3 | 8         |
| 74 | Correlative single-molecule fluorescence barcoding of gene regulation in Saccharomyces cerevisiae.<br>Methods, 2021, 193, 62-67.                                                                                                                              | 1.9 | 8         |
| 75 | Single-molecule optical microscopy of protein dynamics and computational analysis of images to determine cell structure development in differentiating Bacillus subtilis. Computational and Structural Biotechnology Journal, 2020, 18, 1474-1486.            | 1.9 | 8         |
| 76 | Combining single-molecule super-resolved localization microscopy with fluorescence polarization imaging to study cellular processes. JPhys Photonics, 2021, 3, 034010.                                                                                        | 2.2 | 8         |
| 77 | Single-molecule FRET dynamics of molecular motors in an ABEL trap. Methods, 2021, 193, 96-106.                                                                                                                                                                | 1.9 | 8         |
| 78 | Designing a Single-Molecule Biophysics Tool for Characterising DNA Damage for Techniques that Kill<br>Infectious Pathogens Through DNA Damage Effects. Advances in Experimental Medicine and Biology,<br>2016, 915, 115-127.                                  | 0.8 | 7         |
| 79 | Transcription factors in eukaryotic cells can functionally regulate gene expression by acting in<br>oligomeric assemblies formed from an intrinsically disordered protein phase transition enabled by<br>molecular crowding. Transcription, 2018, 9, 298-306. | 1.7 | 7         |
| 80 | Molecular crowding in single eukaryotic cells: Using cell environment biosensing and single-molecule optical microscopy to probe dependence on extracellular ionic strength, local glucose conditions, and sensor copy number. Methods, 2021, 193, 54-61.     | 1.9 | 7         |
| 81 | Using Fluorescence Recovery After Photobleaching (FRAP) to Study Dynamics of the Structural<br>Maintenance of Chromosome (SMC) Complex In Vivo. Methods in Molecular Biology, 2016, 1431, 37-46.                                                              | 0.4 | 6         |
| 82 | A CLK1-KKT2 Signaling Pathway Regulating Kinetochore Assembly in Trypanosoma brucei. MBio, 2021, 12, e0068721.                                                                                                                                                | 1.8 | 6         |
| 83 | Investigating molecular crowding during cell division and hyperosmotic stress in budding yeast with FRET. Current Topics in Membranes, 2021, 88, 75-118.                                                                                                      | 0.5 | 6         |
| 84 | Single-Molecular Quantification of Flowering Control Proteins Within Nuclear Condensates in Live Whole Arabidopsis Root. Methods in Molecular Biology, 2022, , 311-328.                                                                                       | 0.4 | 6         |
| 85 | Correlative approaches in single-molecule biophysics: A review of the progress in methods and applications. Methods, 2021, 193, 1-4.                                                                                                                          | 1.9 | 5         |
| 86 | The Biophysics of Infection. Advances in Experimental Medicine and Biology, 2016, 915, 1-3.                                                                                                                                                                   | 0.8 | 5         |
| 87 | Rapid rotation of micron and submicron dielectric particles measured using optical tweezers. , 0, .                                                                                                                                                           |     | 5         |
| 88 | Biophysics. , 0, , .                                                                                                                                                                                                                                          |     | 5         |
| 89 | The effect of stress on biophysical characteristics of misfolded protein aggregates in living Saccharomyces cerevisiae cells. Experimental Gerontology, 2022, 162, 111755.                                                                                    | 1.2 | 5         |
| 90 | Visualizing Single Molecular Complexes <em>In Vivo</em> Using Advanced Fluorescence<br>Microscopy. Journal of Visualized Experiments, 2009, , 1508.                                                                                                           | 0.2 | 4         |
|    |                                                                                                                                                                                                                                                               |     |           |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Using bespoke fluorescence microscopy to study the soft condensed matter of living cells at the single molecule level. Journal of Physics: Conference Series, 2011, 286, 012001.           | 0.3 | 4         |
| 92  | Force Spectroscopy in Studying Infection. Advances in Experimental Medicine and Biology, 2016, 915, 307-327.                                                                               | 0.8 | 4         |
| 93  | Elucidating the Role of Topological Constraint on the Structure of Overstretched DNA Using<br>Fluorescence Polarization Microscopy. Journal of Physical Chemistry B, 2021, 125, 8351-8361. | 1.2 | 4         |
| 94  | The Effect of Lithium on the Budding Yeast Saccharomyces cerevisiae upon Stress Adaptation.<br>Microorganisms, 2022, 10, 590.                                                              | 1.6 | 4         |
| 95  | A general approach for segmenting elongated and stubby biological objects: Extending a chord length<br>transform with the Radon transform. , 2010, , .                                     |     | 3         |
| 96  | A novel multiple particle tracking algorithm for noisy in vivo data by minimal path optimization within the spatio-temporal volume. , 2009, , .                                            |     | 2         |
| 97  | An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor.<br>Royal Society Open Science, 2017, 4, 160767.                                            | 1.1 | 2         |
| 98  | The case for biophysics super-groups in physics departments. Physical Biology, 2018, 15, 060201.                                                                                           | 0.8 | 2         |
| 99  | New Advances in Chromosome Architecture. Methods in Molecular Biology, 2016, 1431, 1-3.                                                                                                    | 0.4 | 1         |
| 100 | A System-level Approach to Single-Molecule Live-Cell Fluorescence Microscopy. Infocus Magazine, 2013, , 4-18.                                                                              | 0.1 | 1         |
| 101 | The End Restraint Method for Mechanically Perturbing Nucleic Acids In Silico. Methods in Molecular<br>Biology, 2022, , 249-262.                                                            | 0.4 | 1         |
| 102 | Discrete and Continuous Three Dimensional Simulations for Fluorescence Recovery In Bacteria.<br>Biophysical Journal, 2010, 98, 235a.                                                       | 0.2 | 0         |
| 103 | Advanced Multidimensional Optics to Investigate Biological Complexity at the Single Molecule Level in<br>Living, Functional Cells. Biophysical Journal, 2010, 98, 587a.                    | 0.2 | 0         |
| 104 | Stoichiometry of Active DNA Replication Machinery Within Living Escherichia Coli Cells. Biophysical<br>Journal, 2010, 98, 608a.                                                            | 0.2 | 0         |
| 105 | Fast Millisecond Imaging of Single Fluorescent Protein Molecules Using a Simple "Slimfield―Optical<br>Trick. Biophysical Journal, 2010, 98, 588a.                                          | 0.2 | 0         |
| 106 | Dynamics and Co-Localization of the Electron Transport Chain of Escherichia Coli: Investigations<br>Through Fluorescence Microscopy. Biophysical Journal, 2010, 98, 234a.                  | 0.2 | 0         |
| 107 | Single Molecule Live Cell Millisecond Fluorescence Imaging of Bacterial Condensins. Biophysical<br>Journal, 2012, 102, 279a.                                                               | 0.2 | 0         |
| 108 | Sub-Millisecond Single Molecule Fluorescence Imaging Combined with Dual Optical Tweezers on DNA<br>Tethers. Biophysical Journal, 2012, 102, 180a.                                          | 0.2 | 0         |

| #   | Article                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Making the invisible visible: part 1 $\hat{a} \in$ " methods that use visible light. , 0, , 60-101.                                                  |     | 0         |
| 110 | Measuring forces and manipulating single molecules. , 0, , 121-148.                                                                                  |     | 0         |
| 111 | Into the membrane. , 0, , 183-219.                                                                                                                   |     | 0         |
| 112 | Inside cells. , 0, , 220-252.                                                                                                                        |     | 0         |
| 113 | Delocalised electron transport and chemiosmosis in Escherichia coli. Biochimica Et Biophysica Acta -<br>Bioenergetics, 2014, 1837, e88.              | 0.5 | 0         |
| 114 | Transcription Factor Clustering in Live Yeast Cells. Biophysical Journal, 2016, 110, 231a.                                                           | 0.2 | 0         |
| 115 | Developing a Single-Molecule Fluorescence Tool to Quantify DNA Damage. Biophysical Journal, 2016,<br>110, 164a.                                      | 0.2 | 0         |
| 116 | Imaging the cell. Biophysical Reviews, 2017, 9, 295-296.                                                                                             | 1.5 | 0         |
| 117 | Spring blooms from self-assembly: epigenetic memory governed by nuclear assemblies and condensates. Biophysical Journal, 2022, 121, 168a.            | 0.2 | 0         |
| 118 | Exploring the structural dynamics of DNA using fluorescence polarization microscopy and optical tweezers. Biophysical Journal, 2022, 121, 277a-278a. | 0.2 | 0         |
| 119 | Surviving early career research and beyond in biophysics/biological physics: A concise user guide.<br>Physical Biology, 0, , .                       | 0.8 | 0         |