Mohnish Pandey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3216466/publications.pdf

Version: 2024-02-01

26 papers 1,936 citations

471509 17 h-index 27 g-index

27 all docs

27 docs citations

times ranked

27

3494 citing authors

#	Article	IF	CITATIONS
1	The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals. 2D Materials, 2018, 5, 042002.	4.4	711
2	Two-Dimensional MXenes as Catalysts for Electrochemical Hydrogen Evolution: A Computational Screening Study. Journal of Physical Chemistry C, 2017, 121, 13593-13598.	3.1	183
3	New Lightâ∈Harvesting Materials Using Accurate and Efficient Bandgap Calculations. Advanced Energy Materials, 2015, 5, 1400915.	19.5	124
4	Defect-Tolerant Monolayer Transition Metal Dichalcogenides. Nano Letters, 2016, 16, 2234-2239.	9.1	111
5	Band Gap Tuning and Defect Tolerance of Atomically Thin Two-Dimensional Organic–Inorganic Halide Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 4346-4352.	4.6	107
6	Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS ₃ . Energy and Environmental Science, 2017, 10, 2579-2593.	30.8	91
7	Efficient Charge Separation in 2D Janus van der Waals Structures with Built-in Electric Fields and Intrinsic p–n Doping. Journal of Physical Chemistry C, 2018, 122, 24520-24526.	3.1	79
8	Two-Dimensional Metal Dichalcogenides and Oxides for Hydrogen Evolution: A Computational Screening Approach. Journal of Physical Chemistry Letters, 2015, 6, 1577-1585.	4.6	75
9	Fundamental limitation of electrocatalytic methane conversion to methanol. Physical Chemistry Chemical Physics, 2018, 20, 11152-11159.	2.8	73
10	Band structure engineered layered metals for low-loss plasmonics. Nature Communications, 2017, 8, 15133.	12.8	59
11	High-Throughput Computational Assessment of Previously Synthesized Semiconductors for Photovoltaic and Photoelectrochemical Devices. ACS Energy Letters, 2018, 3, 436-446.	17.4	51
12	Heats of formation of solids with error estimation: The mBEEF functional with and without fitted reference energies. Physical Review B, 2015, 91, .	3.2	33
13	Phase Transition of MoS ₂ Bilayer Structures. Journal of Physical Chemistry C, 2016, 120, 3776-3780.	3.1	33
14	Shining Light on Sulfide Perovskites: LaYS ₃ Material Properties and Solar Cells. Chemistry of Materials, 2019, 31, 3359-3369.	6.7	32
15	Definition of a scoring parameter to identify low-dimensional materials components. Physical Review Materials, 2019, 3, .	2.4	30
16	Atomically Thin Ordered Alloys of Transition Metal Dichalcogenides: Stability and Band Structures. Journal of Physical Chemistry C, 2016, 120, 23024-23029.	3.1	20
17	II–IV–V _{2} and III–III–V _{2} Polytypes as Light Absorbers for Single Junction and Tandem Photovoltaic Devices. Journal of Physical Chemistry C, 2017, 121, 17780-17786.	3.1	18
18	Size-selective electrocatalytic activity of (Pt) < sub > n < /sub > /MoS < sub > 2 < /sub > for oxygen reduction reaction. Catalysis Science and Technology, 2016, 6, 6389-6395.	4.1	16

#	Article	IF	CITATIONS
19	Promising quaternary chalcogenides as high-band-gap semiconductors for tandem photoelectrochemical water splitting devices: A computational screening approach. Physical Review Materials, 2018, 2, .	2.4	16
20	Increased Loading of Eu ³⁺ Ions in Monazite LaVO ₄ Nanocrystals via Pressure-Driven Phase Transitions. Crystal Growth and Design, 2013, 13, 2344-2349.	3.0	15
21	Band-gap engineering of functional perovskites through quantum confinement and tunneling. Physical Review B, 2015, 91, .	3.2	13
22	Reply to comment on †The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals†M. 2D Materials, 2019, 6, 048002.	4.4	12
23	Stabilization and growth of non-native nanocrystals at low and atmospheric pressures. Journal of Chemical Physics, 2012, 136, 044703.	3.0	11
24	Stabilization of Rocksalt CdSe at Atmospheric Pressures via Pseudomorphic Growth. Journal of Physical Chemistry C, 2013, 117, 7643-7647.	3.1	10
25	Hydroxylation induced stabilization of near-surface rocksalt nanostructure on wurtzite ZnO structure. Journal of Chemical Physics, 2013, 138, 224701.	3.0	5
26	Role of Long-Range Dispersion Forces in Modeling of MXenes as Battery Electrode Materials. Journal of Physical Chemistry C, 2019, 123, 4064-4071.	3.1	5