Thierry Brousse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3216454/publications.pdf Version: 2024-02-01

THIEDDY RDOUSSE

#	Article	IF	CITATIONS
1	Charge Storage Mechanism of MnO2Electrode Used in Aqueous Electrochemical Capacitor. Chemistry of Materials, 2004, 16, 3184-3190.	6.7	2,436
2	To Be or Not To Be Pseudocapacitive?. Journal of the Electrochemical Society, 2015, 162, A5185-A5189.	2.9	2,085
3	Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 2017, 5, 12653-12672.	10.3	1,152
4	Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide. Chemistry of Materials, 2002, 14, 3946-3952.	6.7	913
5	Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nature Nanotechnology, 2017, 12, 7-15.	31.5	753
6	Crystalline MnO[sub 2] as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors. Journal of the Electrochemical Society, 2006, 153, A2171.	2.9	619
7	Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Applied Physics A: Materials Science and Processing, 2006, 82, 599-606.	2.3	575
8	Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. Journal of Power Sources, 2007, 173, 633-641.	7.8	453
9	Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes. MRS Bulletin, 2011, 36, 513-522.	3.5	368
10	Amorphous silicon as a possible anode material for Li-ion batteries. Journal of Power Sources, 1999, 81-82, 233-236.	7.8	344
11	Variation of the MnO ₂ Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na ₂ SO ₄ Electrolyte. Journal of Physical Chemistry C, 2008, 112, 7270-7277.	3.1	332
12	Thinâ€Film Crystalline SnO2â€Lithium Electrodes. Journal of the Electrochemical Society, 1998, 145, 1-4.	2.9	327
13	Manganese Oxides: Battery Materials Make the Leap to Electrochemical Capacitors. Electrochemical Society Interface, 2008, 17, 49-52.	0.4	317
14	A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte. Journal of the Electrochemical Society, 2004, 151, A614.	2.9	314
15	Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy and Environmental Science, 2019, 12, 96-115.	30.8	297
16	Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nature Materials, 2018, 17, 167-173.	27.5	229
17	Aluminum negative electrode in lithium ion batteries. Journal of Power Sources, 2001, 97-98, 185-187.	7.8	228
18	A Hybrid Fe[sub 3]O[sub 4]-MnO[sub 2] Capacitor in Mild Aqueous Electrolyte. Electrochemical and Solid-State Letters, 2003, 6, A244.	2.2	200

#	Article	IF	CITATIONS
19	Perspective—A Guideline for Reporting Performance Metrics with Electrochemical Capacitors: From Electrode Materials to Full Devices. Journal of the Electrochemical Society, 2017, 164, A1487-A1488.	2.9	198
20	Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. Journal of Power Sources, 2011, 196, 4117-4122.	7.8	182
21	An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochimica Acta, 2013, 91, 253-260.	5.2	177
22	Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morphology on the capacitance. Journal of Power Sources, 2015, 300, 525-532.	7.8	152
23	Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors. Carbon, 2011, 49, 1340-1348.	10.3	147
24	Highâ€Resolution Electron Microscopy Investigation of Capacity Fade in SnO2 Electrodes for Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1999, 146, 2472-2476.	2.9	138
25	TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage. Journal of Power Sources, 2006, 158, 571-577.	7.8	133
26	Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy, 2014, 7, 104-113.	16.0	132
27	Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems. Carbon, 2015, 92, 362-381.	10.3	132
28	Chemical Coupling of Carbon Nanotubes and Silicon Nanoparticles for Improved Negative Electrode Performance in Lithiumâ€lon Batteries. Advanced Functional Materials, 2011, 21, 3524-3530.	14.9	124
29	Graphiteâ€Grafted Silicon Nanocomposite as a Negative Electrode for Lithiumâ€ l on Batteries. Advanced Materials, 2009, 21, 4735-4741.	21.0	122
30	Atomic Layer Deposition of Functional Layers for on Chip 3D Liâ€ l on All Solid State Microbattery. Advanced Energy Materials, 2017, 7, 1601402.	19.5	119
31	Ultrafast charge–discharge characteristics of a nanosized core–shell structured LiFePO ₄ material for hybrid supercapacitor applications. Energy and Environmental Science, 2016, 9, 2143-2151.	30.8	117
32	TiO ₂ (B) Nanoribbons As Negative Electrode Material for Lithium Ion Batteries with High Rate Performance. Inorganic Chemistry, 2010, 49, 8457-8464.	4.0	114
33	Ni(OH)2 and NiO Based Composites: Battery Type Electrode Materials for Hybrid Supercapacitor Devices. Materials, 2018, 11, 1178.	2.9	107
34	Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries. Journal of Power Sources, 2015, 274, 1085-1090.	7.8	105
35	Strategies to Improve the Performance of Carbon/Carbon Capacitors in Salt Aqueous Electrolytes. Journal of the Electrochemical Society, 2015, 162, A5148-A5157.	2.9	103
36	Air stable copper phosphide (Cu3P): a possible negative electrode material for lithium batteries. Electrochemistry Communications, 2004, 6, 263-267.	4.7	101

#	Article	IF	CITATIONS
37	VN thin films as electrode materials for electrochemical capacitors. Electrochimica Acta, 2014, 141, 203-211.	5.2	98
38	New anode systems for lithium ion cells. Journal of Power Sources, 2001, 94, 169-174.	7.8	95
39	Ink-jet printed porous composite LiFePO 4 electrode from aqueous suspension for microbatteries. Journal of Power Sources, 2015, 287, 261-268.	7.8	95
40	Asymmetric electrochemical capacitor microdevice designed with vanadium nitride and nickel oxide thin film electrodes. Electrochemistry Communications, 2013, 28, 104-106.	4.7	93
41	All oxide solid-state lithium-ion cells. Journal of Power Sources, 1997, 68, 412-415.	7.8	89
42	Comparative Performances of Birnessite and Cryptomelane MnO ₂ as Electrode Material in Neutral Aqueous Lithium Salt for Supercapacitor Application. Journal of Physical Chemistry C, 2013, 117, 7408-7422.	3.1	88
43	Improvement of the Thermal Stability of LiNi[sub 0.8]Co[sub 0.2]O[sub 2] Cathode by a SiO[sub x] Protective Coating. Journal of the Electrochemical Society, 2004, 151, A922.	2.9	85
44	Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices. Scripta Materialia, 2013, 68, 659-662.	5.2	85
45	Cu3P as anode material for lithium ion battery: powder morphology and electrochemical performances. Journal of Power Sources, 2004, 136, 80-87.	7.8	84
46	Titanium vanadium nitride electrode for micro-supercapacitors. Electrochemistry Communications, 2017, 77, 40-43.	4.7	79
47	Stable high-voltage aqueous pseudocapacitive energy storage device with slow self-discharge. Nano Energy, 2019, 64, 103961.	16.0	78
48	Novel insights into the charge storage mechanism in pseudocapacitive vanadium nitride thick films for high-performance on-chip micro-supercapacitors. Energy and Environmental Science, 2020, 13, 949-957.	30.8	78
49	Lithium rhenium(<scp>vii</scp>) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors. Journal of Materials Chemistry A, 2016, 4, 12609-12615.	10.3	77
50	High Areal Energy 3Dâ€Interdigitated Microâ€Supercapacitors in Aqueous and Ionic Liquid Electrolytes. Advanced Materials Technologies, 2017, 2, 1700126.	5.8	77
51	Highly doped silicon nanowires based electrodes for micro-electrochemical capacitor applications. Electrochemistry Communications, 2012, 25, 109-111.	4.7	75
52	Composite negative electrodes for lithium ion cells. Solid State Ionics, 1998, 113-115, 51-56.	2.7	74
53	Carbon/PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte. Electrochimica Acta, 2011, 56, 8122-8128.	5.2	73
54	Antimony doping effect on the electrochemical behavior of SnO2 thin film electrodes. Journal of Power Sources, 2001, 97-98, 232-234.	7.8	72

#	Article	IF	CITATIONS
55	Electrochemical Reaction Between Lithium and β-Quartz GeO[sub 2]. Electrochemical and Solid-State Letters, 2004, 7, A278.	2.2	71
56	Spontaneous grafting of 9,10-phenanthrenequinone on porous carbon as an active electrode material in an electrochemical capacitor in an alkaline electrolyte. Journal of Materials Chemistry A, 2015, 3, 6146-6156.	10.3	70
57	Supercapacitor behavior of new substituted manganese dioxides. Journal of Power Sources, 2007, 165, 651-655.	7.8	69
58	Titanium and vanadium oxynitride powders as pseudo-capacitive materials for electrochemical capacitors. Electrochimica Acta, 2012, 82, 257-262.	5.2	69
59	Siliconâ€Microtube Scaffold Decorated with Anatase TiO ₂ as a Negative Electrode for a 3D Litiumâ€lon Microbattery. Advanced Energy Materials, 2014, 4, 1301612.	19.5	67
60	Thin films of pure vanadium nitride: Evidence for anomalous non-faradaic capacitance. Journal of Power Sources, 2016, 324, 439-446.	7.8	67
61	Multi-level reduced-order thermal modeling of electrochemical capacitors. Journal of Power Sources, 2006, 157, 630-640.	7.8	66
62	Nanosiliconâ€Based Thick Negative Composite Electrodes for Lithium Batteries with Graphene as Conductive Additive. Advanced Energy Materials, 2013, 3, 1351-1357.	19.5	66
63	Nanocrystalline FeWO4 as a pseudocapacitive electrode material for high volumetric energy density supercapacitors operated in an aqueous electrolyte. Electrochemistry Communications, 2015, 57, 61-64.	4.7	66
64	High temperature solid-state supercapacitor designed with ionogel electrolyte. Energy Storage Materials, 2019, 21, 439-445.	18.0	66
65	Electrochemical study of anthraquinone groups, grafted by the diazonium chemistry, in different aqueous media-relevance for the development of aqueous hybrid electrochemical capacitor. Electrochimica Acta, 2012, 82, 250-256.	5.2	65
66	On Chip Interdigitated Micro‣upercapacitors Based on Sputtered Bifunctional Vanadium Nitride Thin Films with Finely Tuned Inter―and Intracolumnar Porosities. Advanced Materials Technologies, 2018, 3, 1800036.	5.8	65
67	Sputtered tungsten nitride films as pseudocapacitive electrode for on chip micro-supercapacitors. Energy Storage Materials, 2019, 20, 243-252.	18.0	65
68	Suitable Conditions for the Use of Vanadium Nitride as an Electrode for Electrochemical Capacitor. Journal of the Electrochemical Society, 2016, 163, A1077-A1082.	2.9	64
69	Asymmetric micro-supercapacitors based on electrodeposited Ruo2 and sputtered VN films. Energy Storage Materials, 2021, 37, 207-214.	18.0	64
70	Sprayed and thermally evaporated SnO2 thin films for ethanol sensors. Sensors and Actuators B: Chemical, 1996, 31, 77-79.	7.8	62
71	Role of nitrogen doping at the surface of titanium nitride thin films towards capacitive charge storage enhancement. Journal of Power Sources, 2017, 359, 349-354.	7.8	62
72	Synthesis, characterization and electrochemical properties of copper phosphide (Cu3P) thick films prepared by solid-state reaction at low temperature: a probable anode for lithium ion batteries. Electrochimica Acta, 2005, 50, 4763-4770.	5.2	61

#	Article	IF	CITATIONS
73	Micro-ultracapacitors with highly doped silicon nanowires electrodes. Nanoscale Research Letters, 2013, 8, 38.	5.7	61
74	Wide-voltage-window silicon nanowire electrodes for micro-supercapacitors via electrochemical surface oxidation in ionic liquid electrolyte. Electrochemistry Communications, 2014, 41, 31-34.	4.7	61
75	Electrodes based on nano-tree-like vanadium nitride and carbon nanotubes for micro-supercapacitors. Journal of Materials Science and Technology, 2018, 34, 976-982.	10.7	61
76	MnO ₂ Thin Films on 3D Scaffold: Microsupercapacitor Electrodes Competing with "Bulk― Carbon Electrodes. Advanced Energy Materials, 2015, 5, 1500680.	19.5	60
77	Ultra-dense and highly doped SiNWs for micro-supercapacitors electrodes. Electrochimica Acta, 2014, 117, 159-163.	5.2	59
78	Electrochemical study of aqueous asymmetric FeWO4/MnO2 supercapacitor. Journal of Power Sources, 2016, 326, 695-701.	7.8	59
79	Non-stoichiometry in LiMn2O4 thin films by laser ablation. Solid State Ionics, 2001, 138, 213-219.	2.7	56
80	Measuring time-dependent heat profiles of aqueous electrochemical capacitors under cycling. Thermochimica Acta, 2011, 526, 1-8.	2.7	54
81	LiMn2O4 thin films for lithium ion sensors. Solid State Ionics, 1998, 112, 249-254.	2.7	53
82	Are tomorrow's micro-supercapacitors hidden in a forest of silicon nanotrees?. Journal of Power Sources, 2014, 269, 740-746.	7.8	52
83	Use of genetic algorithms for the simultaneous estimation of thin films thermal conductivity and contact resistances. International Journal of Heat and Mass Transfer, 2001, 44, 3973-3984.	4.8	51
84	Electrolytes for hybrid carbon–MnO2 electrochemical capacitors. Electrochimica Acta, 2010, 55, 7479-7483.	5.2	51
85	The electrochemical generation of ferrate at pressed iron powder electrodes: effect of various operating parameters. Electrochimica Acta, 2003, 48, 1425-1433.	5.2	50
86	Simpler and greener grafting method for improving the stability of anthraquinone-modified carbon electrode in alkaline media. Electrochimica Acta, 2014, 137, 447-453.	5.2	50
87	Solder-reflow resistant solid-state micro-supercapacitors based on ionogels. Journal of Materials Chemistry A, 2016, 4, 11835-11843.	10.3	50
88	Electrochemical Performance of Carbon/MnO ₂ Nanocomposites Prepared via Molecular Bridging as Supercapacitor Electrode Materials. Journal of the Electrochemical Society, 2015, 162, A5179-A5184.	2.9	48
89	Characterization of sprayed and sputter deposited LiCoO2 thin films for rechargeable microbatteries. Journal of Power Sources, 1996, 63, 187-191.	7.8	46
90	SnO2 negative electrode for lithium ion cell: in situ Mössbauer investigation of chemical changes upon discharge. Journal of Solid State Chemistry, 2004, 177, 4332-4340.	2.9	46

#	Article	IF	CITATIONS
91	All Solid-State Symmetrical Activated Carbon Electrochemical Double Layer Capacitors Designed with Ionogel Electrolyte. ECS Electrochemistry Letters, 2014, 3, A112-A115.	1.9	45
92	Sr- and Fe-substituted LaMnO3 Perovskite: Fundamental insight and possible use in asymmetric hybrid supercapacitor. Energy Storage Materials, 2022, 45, 119-129.	18.0	44
93	In situ X-ray diffraction investigation of zinc based electrode in Ni–Zn secondary batteries. Electrochimica Acta, 2013, 109, 110-116.	5.2	43
94	Use of sacrificial lithium nickel oxide for loading graphitic anode in Li-ion capacitors. Electrochimica Acta, 2016, 206, 440-445.	5.2	43
95	Electrochemical Template Synthesis of Ordered Lead Dioxide Nanowires. Journal of the Electrochemical Society, 2009, 156, A645.	2.9	42
96	Tuning silicon nanowires doping level and morphology for highly efficient micro-supercapacitors. Nano Energy, 2014, 5, 20-27.	16.0	41
97	Ultra-high areal capacitance and high rate capability RuO2 thin film electrodes for 3D micro-supercapacitors. Energy Storage Materials, 2021, 42, 259-267.	18.0	41
98	Investigation of cavity microelectrode technique for electrochemical study with manganese dioxides. Electrochimica Acta, 2012, 86, 268-276.	5.2	40
99	On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density. Energy Storage Materials, 2021, 38, 520-527.	18.0	39
100	Electrochemical preparation and characterization of Birnessite-type layered manganese oxide films. Journal of Physics and Chemistry of Solids, 2006, 67, 1351-1354.	4.0	38
101	Synthesis of nanosized Si particles via a mechanochemical solid–liquid reaction and application in Li-ion batteries. Solid State Ionics, 2007, 178, 1297-1303.	2.7	38
102	Chemical Modification of Graphene Oxide through Diazonium Chemistry and Its Influence on the Structure–Property Relationships of Graphene Oxide–Iron Oxide Nanocomposites. Chemistry - A European Journal, 2015, 21, 12465-12474.	3.3	38
103	Silicon nanowires and nanotrees: elaboration and optimization of new 3D architectures for high performance on-chip supercapacitors. RSC Advances, 2016, 6, 81017-81027.	3.6	38
104	In situ redox functionalization of composite electrodes for high power–high energy electrochemical storage systems via a non-covalent approach. Energy and Environmental Science, 2012, 5, 5379-5386.	30.8	37
105	Cascadeâ€Type Prelithiation Approach for Liâ€lon Capacitors. Advanced Energy Materials, 2019, 9, 1900078.	19.5	37
106	Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries. Physical Chemistry Chemical Physics, 2010, 12, 220-226.	2.8	36
107	Determination of the Quinone-loading of a Modified Carbon Powder-based Electrode for Electrochemical Capacitor. Electrochemistry, 2013, 81, 863-866.	1.4	36
108	Calorimetric measurement of the heat generated by a Double-Layer Capacitor cell under cycling. Thermochimica Acta, 2010, 510, 53-60.	2.7	35

#	Article	IF	CITATIONS
109	Modeling pseudo capacitance of manganese dioxide. Electrochimica Acta, 2012, 67, 41-49.	5.2	35
110	Tuning the Cation Ordering with the Deposition Pressure in Sputtered LiMn _{1.5} Ni _{0.5} O ₄ Thin Film Deposited on Functional Current Collectors for Li-Ion Microbattery Applications. Chemistry of Materials, 2017, 29, 6044-6057.	6.7	35
111	Achieving on chip micro-supercapacitors based on CrN deposited by bipolar magnetron sputtering at glancing angle. Electrochimica Acta, 2019, 324, 134890.	5.2	35
112	Synthesis, Characterization and Electrochemical Studies of Active Materials for Sodium Ion Batteries. ECS Transactions, 2011, 35, 91-98.	0.5	34
113	Thermal conductivity of ZrO thin films. International Journal of Thermal Sciences, 2000, 39, 537-543.	4.9	33
114	EQCM study of electrodeposited PbO2: Investigation of the gel formation and discharge mechanisms. Electrochimica Acta, 2009, 54, 7382-7388.	5.2	32
115	Aqueous energy-storage cells based on activated carbon and LiMn 2 O 4 electrodes. Journal of Power Sources, 2017, 354, 148-156.	7.8	32
116	Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor. ACS Applied Materials & Interfaces, 2017, 9, 13761-13769.	8.0	32
117	Metal oxide anodes for Li-ion batteries. Ionics, 1997, 3, 332-337.	2.4	31
118	Search for suitable matrix for the use of tin-based anodes in lithium ion batteries. Solid State Ionics, 2000, 135, 87-93.	2.7	31
119	New generation of hybrid carbon/Ni(OH)2 electrochemical capacitor using functionalized carbon electrode. Journal of Power Sources, 2016, 326, 702-710.	7.8	31
120	Improving the Volumetric Energy Density of Supercapacitors. Electrochimica Acta, 2016, 206, 458-463.	5.2	31
121	Transparent electrochemical capacitor based on electrodeposited MnO2 thin film electrodes and gel-type electrolyte. Electrochemistry Communications, 2009, 11, 1259-1261.	4.7	30
122	Influence of particle size and matrix in "metal―anodes for Li-ion cells. Journal of Power Sources, 2001, 97-98, 188-190.	7.8	29
123	Nanosized α-LiFeO2 as electrochemical supercapacitor electrode in neutral sulfate electrolytes. Electrochimica Acta, 2010, 55, 7511-7515.	5.2	29
124	Doping of Cobalt into Multilayered Manganese Oxide for Improved Pseudocapacitive Properties. Journal of the Electrochemical Society, 2010, 157, A1067.	2.9	29
125	Toward fully organic rechargeable charge storage devices based on carbon electrodes grafted with redox molecules. Journal of Materials Chemistry A, 2014, 2, 8599-8602.	10.3	29
126	Anthraquinone modification of microporous carbide derived carbon films for on-chip micro-supercapacitors applications. Electrochimica Acta, 2017, 246, 391-398.	5.2	29

#	Article	IF	CITATIONS
127	Electrochemical study of H3PMo12 retention on Vulcan carbon grafted with NH2 and OH groups. Journal of Solid State Electrochemistry, 2016, 20, 67-79.	2.5	27
128	Modification of activated carbons based on diazonium ions in situ produced from aminobenzene organic acid without addition of other acid. Journal of Materials Chemistry, 2011, 21, 12221.	6.7	26
129	Morphology Effects on the Supercapacitive Electrochemical Performances of Iron Oxide/Reduced Graphene Oxide Nanocomposites. ChemElectroChem, 2014, 1, 747-754.	3.4	26
130	MnO2 as ink material for the fabrication of supercapacitor electrodes. Electrochimica Acta, 2015, 152, 520-529.	5.2	26
131	The chemical changes occurring upon cycling of a SnO2 negative electrode for lithium ion cell: In situ Mössbauer investigation. Journal of Solid State Chemistry, 2006, 179, 476-485.	2.9	25
132	Structural changes of a Li/S rechargeable cell in Lithium Metal Polymer technology. Journal of Power Sources, 2013, 241, 249-254.	7.8	25
133	Sputtered Titanium Nitride: A Bifunctional Material for Li-Ion Microbatteries. Journal of the Electrochemical Society, 2015, 162, A493-A500.	2.9	25
134	Materials for Electrochemical Capacitors. , 2017, , 495-561.		25
135	Microstructure and metal–insulator transition of NdNiO3 thin films on various substrates. Thin Solid Films, 1999, 354, 50-54.	1.8	24
136	Concept for Charge Storage in Electrochemical Capacitors with Functionalized Carbon Electrodes. Electrochemical and Solid-State Letters, 2008, 11, A202.	2.2	24
137	Spontaneous arylation of activated carbon from aminobenzene organic acids as source of diazonium ions in mild conditions. Electrochimica Acta, 2013, 88, 680-687.	5.2	24
138	Synthesis, characterization and thermal stability of Ni3P coatings on nickel. Materials Chemistry and Physics, 2005, 92, 534-539.	4.0	23
139	Reactive sputtering of vanadium nitride thin films as pseudo-capacitor electrodes for high areal capacitance and cyclic stability. Journal of Materials Science: Materials in Electronics, 2018, 29, 13125-13131.	2.2	22
140	Improved electro-grafting of nitropyrene onto onion-like carbon via in situ electrochemical reduction and polymerization: tailoring redox energy density of the supercapacitor positive electrode. Journal of Materials Chemistry A, 2017, 5, 1488-1494.	10.3	21
141	Reflow Soldering-Resistant Solid-State 3D Micro-Supercapacitors Based on Ionogel Electrolyte for Powering the Internet of Things. Journal of the Electrochemical Society, 2020, 167, 100551.	2.9	20
142	Growth by laser ablation of Ti-based oxide films with different valency states. Applied Physics A: Materials Science and Processing, 1998, 67, 425-428.	2.3	19
143	Electrochemical intercalation of lithium into the perovskite-type NbO2F: influence of the NbO2F particle size. Journal of Solid State Electrochemistry, 2001, 5, 1-7.	2.5	19
144	Silicon/graphite nanocomposite electrodes prepared by low pressure chemical vapor deposition. Journal of Power Sources, 2007, 174, 900-904.	7.8	19

#	Article	IF	CITATIONS
145	Electrochemical Capacitors: Fundamentals to Applications. Journal of the Electrochemical Society, 2015, 162, Y3-Y3.	2.9	19
146	Polycationic oxides as potential electrode materials for aqueous-based electrochemical capacitors. Current Opinion in Electrochemistry, 2018, 9, 87-94.	4.8	19
147	Advanced oxide and metal powders for negative electrodes in lithium-ion batteries. Powder Technology, 2002, 128, 124-130.	4.2	18
148	Highly N-doped Silicon Nanowires as a Possible Alternative to Carbon for On-chip Electrochemical Capacitors. Electrochemistry, 2013, 81, 777-782.	1.4	18
149	Direct introduction of redox centers at activated carbon substrate based on acid-substituent-assisted diazotization. Electrochemistry Communications, 2012, 25, 124-127.	4.7	17
150	Electrode Design for MnO2-Based Aqueous Electrochemical Capacitors: Influence of Porosity and Mass Loading. Materials, 2021, 14, 2990.	2.9	17
151	Stabilizing the Structure of LiCoPO4 Nanocrystals via Addition of Fe3+: Formation of Fe3+ Surface Layer, Creation of Diffusion-Enhancing Vacancies, and Enabling High-Voltage Battery Operation. Chemistry of Materials, 2018, 30, 6675-6683.	6.7	16
152	Improving the Capacity of Electrochemical Capacitor Electrode by Grafting 2-Aminoanthraquinone over Kynol Carbon Cloth Using Diazonium Chemistry. Journal of the Electrochemical Society, 2018, 165, A3342-A3349.	2.9	16
153	Unveiling Pseudocapacitive Charge Storage Behavior in FeWO ₄ Electrode Material by Operando Xâ€Ray Absorption Spectroscopy. Small, 2020, 16, e2002855.	10.0	16
154	Charge storage mechanism of α-MnO2 in protic and aprotic ionic liquid electrolytes. Journal of Power Sources, 2020, 460, 228111.	7.8	16
155	Covalent vs. non-covalent redox functionalization of C–LiFePO4 based electrodes. Journal of Power Sources, 2013, 232, 246-253.	7.8	15
156	Mg2Si and MSi2 (M=Ca, Fe) silicon alloys as possible anodes for lithium batteries. Ionics, 2000, 6, 133-138.	2.4	14
157	Comparison of the electrochemical behaviour of SnO2 and PbO2 negative electrodes for lithium ion batteries. Ionics, 2002, 8, 27-35.	2.4	14
158	Chemical functionalization of activated carbon through radical and diradical intermediates. Electrochemistry Communications, 2013, 34, 14-17.	4.7	14
159	Chloroanthraquinone as a grafted probe molecule to investigate grafting yield on carbon powder. Electrochimica Acta, 2016, 197, 139-145.	5.2	14
160	Solid-state 3D micro-supercapacitors based on ionogel electrolyte: Influence of adding lithium and sodium salts to the ionic liquid. Energy Storage Materials, 2022, 50, 606-617.	18.0	14
161	Tin based alloys for lithium ion batteries. Ionics, 1999, 5, 311-315.	2.4	13
162	Peculiar Li-storage mechanism at graphene edges in turbostratic carbon black and their application in high energy Li-ion capacitor. Journal of Power Sources, 2018, 378, 628-635.	7.8	13

#	Article	IF	CITATIONS
163	A First Outlook of Sputtered FeWO ₄ Thin Films for Micro-Supercapacitor Electrodes. Journal of the Electrochemical Society, 2021, 168, 030524.	2.9	13
164	Laser ablated bismuth cuprate thin films preparation and effect of oxygen nonstoichiometry upon superconductivity. Physica C: Superconductivity and Its Applications, 1990, 170, 545-551.	1.2	12
165	Electrochemical insertion of lithium into the ramsdellite-type oxide Li 2 Ti 3 O 7 : influence of the Li 2 Ti 3 O 7 particle size. Journal of Solid State Electrochemistry, 2002, 6, 403-411.	2.5	12
166	Investigation of Ba0.5Sr0.5CoxFe1-xO3-î´ as a pseudocapacitive electrode material with high volumetric capacitance. Electrochimica Acta, 2018, 271, 677-684.	5.2	12
167	MnPO ₄ ·H ₂ O as Electrode Material for Electrochemical Capacitors. Journal of the Electrochemical Society, 2018, 165, A2349-A2356.	2.9	12
168	Birnessite as Possible Candidate for Hybrid Carbon/MnO2 Electrochemical Capacitor. ECS Transactions, 2008, 16, 119-123.	0.5	11
169	Unravelling redox processes of Li7MnN4 upon electrochemical Li extraction–insertion using operando XAS. Physical Chemistry Chemical Physics, 2017, 19, 27204-27211.	2.8	11
170	Grafting of Quinones on Carbons as Active Electrode Materials in Electrochemical Capacitors. Journal of the Brazilian Chemical Society, 2018, , .	0.6	11
171	Influence of surface chemistry and point defects in TiN based electrodes on electrochemical capacitive storage activity. Scripta Materialia, 2018, 153, 59-62.	5.2	10
172	Superconducting printed YBa2Cu3O7-δ thick films prepared with an argon/oxygen annealing treatment. Physica C: Superconductivity and Its Applications, 1990, 170, 59-64.	1.2	9
173	Catechol-Modified Carbon Cloth as Hybrid Electrode for Energy Storage Devices. Journal of the Electrochemical Society, 2019, 166, A1147-A1153.	2.9	9
174	Sodium borohydride (NaBH ₄) as a high-capacity material for next-generation sodium-ion capacitors. Open Chemistry, 2021, 19, 432-441.	1.9	9
175	Investigating the Cycling Stability of Fe2WO6 Pseudocapacitive Electrode Materials. Nanomaterials, 2021, 11, 1405.	4.1	9
176	Effect of nickel coating on electrochemical performance of graphite anodes for lithium ion batteries. Ionics, 2003, 9, 329-335.	2.4	8
177	EPMA–EDS surface measurements of interdiffusion coefficients between miscible metals in thin films. Applied Surface Science, 2010, 256, 1855-1860.	6.1	8
178	In operando X-ray diffraction study of Li 7 MnN 4 upon electrochemical Li extraction–insertion: A reversible three-phase mechanism. Journal of Power Sources, 2014, 247, 402-405.	7.8	8
179	Performance and limitations of Cu2O:Graphene composite electrode materials for aqueous hybrid electrochemical capacitors. Electrochimica Acta, 2018, 279, 161-167.	5.2	8
180	Direct Hybridization of Polymer Exchange Membrane Surface Fuel Cell with Small Aqueous Supercapacitors. Fuel Cells, 2018, 18, 299-305.	2.4	8

#	Article	IF	CITATIONS
181	Electrochemical study of asymmetric aqueous supercapacitors based on high density oxides: C/Ba0.5Sr0.5Co0.8Fe0.2O3-δ and FeWO4/Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Electrochimica Acta, 2019, 326, 134886.	5.2	7
182	Methods—On the Reliability of the Electrochemical Data Recorded on Nickel Foam in Alkaline Solution: The Illusive Surface Oxide Layer. Journal of the Electrochemical Society, 2021, 168, 120547.	2.9	7
183	Superconducting screen printed thick films of YBa2Cu3O7 and Bi1.6Pb0.4Sr1.6Ca2.4Cu3O10 on polycrystalline substrates. Applied Physics A: Solids and Surfaces, 1989, 49, 217-220.	1.4	6
184	Thermal characterization of dielectric thin films using an improved genetic algorithm. Superlattices and Microstructures, 2004, 35, 239-252.	3.1	6
185	Effect of the Porous Texture of Activated Carbons on the Electrochemical Properties of Molecule-Grafted Carbon Products in Organic Media. Journal of the Electrochemical Society, 2015, 162, A2289-A2295.	2.9	6
186	STRUCTURAL AND MICROSTRUCTURAL EFFECTS ON THE THERMAL CONDUCTIVITY OF ZIRCONIA THIN FILMS. Microscale Thermophysical Engineering, 2001, 5, 267-275.	1.2	5
187	Synthesis of Ordered Lead Dioxide Nanowires using an Electroplating Template Method. ECS Transactions, 2009, 16, 207-211.	0.5	5
188	Capacitive and Pseudocapacitive Electrodes for Electrochemical Capacitors and Hybrid Devices. , 2017, , 1-24.		5
189	Aqueous Energy Storage Device Based on LiMn 2 O 4 (Spinel) Positive Electrode and Anthraquinoneâ€Modified Carbonâ€Negative Electrode. Energy Technology, 2019, 7, 1900589.	3.8	5
190	Influence of ion implantation on the charge storage mechanism of vanadium nitride pseudocapacitive thin films. Electrochemistry Communications, 2021, 125, 107016.	4.7	5
191	In-situ growth of Li-doped Bi2Sr2CaCu2O8 thin films by laser deposition. Physica C: Superconductivity and Its Applications, 1991, 182, 143-148.	1.2	4
192	Preparation of Yî—,Baî—,Cuî—,O and Biî—,Srî—,Caî—,Cuî—,O thin films and low temperature annealing effects. Mate Science and Engineering B: Solid-State Materials for Advanced Technology, 1992, 13, 35-41.	erials 3.5	4
193	Effect of Ball-milling on the Physical and Electrochemical Properties of Lead Dioxide. ECS Transactions, 2009, 16, 213-220.	0.5	4
194	Effect of Ball-Milling on the Physical and Electrochemical Properties of PbO ₂ and PbO ₂ /BaSO ₄ Nanocomposite. Journal of the Electrochemical Society, 2011, 159, A60-A67.	2.9	4
195	Fabrication of a Transparent Supercapacitor Electrode Consisting of Mn-Mo Oxide/CNT Nanocomposite. ECS Transactions, 2012, 41, 53-64.	0.5	4
196	Outer and Inner Surface Contribution of Manganese Dioxides Energy Storage Characterization by Cavity Microelectrode Technique. ECS Transactions, 2014, 58, 53-59.	0.5	4
197	Revisiting Rb2TiNb6O18 as electrode materials for energy storage devices. Electrochemistry Communications, 2022, 137, 107249.	4.7	4
198	Enhancing Cycling Stability and Specific Capacitance of Vanadium Nitride Electrodes by Tuning Electrolyte Composition. Journal of the Electrochemical Society, 2022, 169, 063503.	2.9	3

#	Article	IF	CITATIONS
199	Mesure de la conductivité thermique des couches minces d'oxyde. Revue De Metallurgie, 1999, 96, 667-676.	0.3	2
200	Synthesis of Birnessite-Type Layered Manganese Oxide and their Composites for Supercapacitors. ECS Transactions, 2006, 1, 9-17.	0.5	2
201	Electrochemical Capacitors: When the Levee Breaks. Electrochemistry, 2013, 81, 773-773.	1.4	2
202	Developing Effective Electrodes for Supercapacitors by Grafting of Trihydroxybenzene onto Activated Carbons. Journal of the Electrochemical Society, 2021, 168, 050520.	2.9	2
203	Three-Dimensional TiO ₂ Film Deposited by ALD on Porous Metallic Scaffold for 3D Li-Ion Micro-Batteries: A Road towards Ultra-High Capacity Electrode. Journal of the Electrochemical Society, 2022, 169, 040523.	2.9	2
204	Investigating the Perovskite Ag1-3xLaxNbO3 as a High-Rate Negative Electrode for Li-Ion Batteries. Frontiers in Chemistry, 2022, 10, 873783.	3.6	2
205	Ethanol sensing properties of SnO2 thin films. Ionics, 1995, 1, 499-503.	2.4	1
206	Transparent MnO2-based Electrochemical Capacitor. ECS Transactions, 2008, 16, 193-196.	0.5	1
207	Preparation of Carbonaceous Materials in Fused Carbonate Salts. , 2013, , 331-354.		1
208	High Surface Capacity Li-Ion All Solid State 3D Microbattery Based on Anatase TiO2 Deposited by ALD on Silicon Microstructures. ECS Transactions, 2013, 58, 119-129.	0.5	1
209	Layered Vanadium Phosphates as Electrodes for Electrochemical Capacitors Part I: The Case of VOPO4·2H2O. Journal of the Electrochemical Society, 2021, 168, 070531.	2.9	1
210	Layered Vanadium Phosphates as Electrodes for Electrochemical Capacitors Part II: The Case of VOPO ₄ •CTAB and K _{0.5} VOPO ₄ •1.5H ₂ O. Journal of the Electrochemical Society, 2021, 168, 090520.	2.9	1
211	Couches minces supraconductrices à base D'YBa2Cu3O(7-x) par pulvérisation cathodique multicible. Revue De Physique Appliquée, 1990, 25, 183-187.	0.4	1
212	Studies on Aqueous Soluble Carbonato Complexes of MnII, MnIII and MnIV: OxidationReduction Relationships Acta Chemica Scandinavica, 1999, 53, 1063-1068.	0.7	1
213	Jonction Josephson en couche épaisse d'oxydes supraconducteurs. Journal De Physique III, 1992, 2, 255-262.	0.3	1
214	Ionic Transport and Charge Distribution in Miniaturized Electrochemical Energy Storage Devices byModeling Investigation. Journal of the Electrochemical Society, 0, , .	2.9	1
215	Ag2V4O11: from primary to secondary battery. Journal of Solid State Electrochemistry, 2022, 26, 1951-1960.	2.5	1
216	Characterization of sprayed and sputtered thin films for lithium ion microbatteries. Ionics, 1996, 2, 398-404.	2.4	0

#	Article	IF	CITATIONS
217	Thin Films of Ionic Conductors by Laser Ablation. Materials Research Society Symposia Proceedings, 1998, 548, 213.	0.1	0
218	Birnessite as Possible Candidate for Hybrid Carbon/MnO2 Electrochemical Capacitor. ECS Meeting Abstracts, 2008, , .	0.0	0
219	Transparent MnO2-based Electrochemical Capacitor. ECS Meeting Abstracts, 2008, , .	0.0	0
220	Framework Doping of Cobalt into Layered Manganese Oxide for Improved Capacitive Behavior. ECS Transactions, 2009, 25, 183-191.	0.5	0
221	An Investigation of Nanostructured Thin Film α-MoO3 Based Supercapacitor Electrodes in an Aqueous Electrolyte. ECS Meeting Abstracts, 2012, , .	0.0	0
222	MnO2/Carbon Nanocomposite Electrode Prepared Via Molecular Bridging. ECS Meeting Abstracts, 2012,	0.0	0
223	Transition Metal Nitride Thin Films for Electrochemical Capacitor Microdevices. ECS Meeting Abstracts, 2013, , .	0.0	0
224	Revisiting the five-decade-old structure of the Fe ₂ WO ₆ powder with incommensurate modulations. CrystEngComm, 2021, 23, 7298-7304.	2.6	0
225	Experimental and Theoretical Study of the Effect of Functionalized Pyrene Polymerization on Carbon Electrode Surfaces for Electrochemical Storage. Batteries and Supercaps, 2021, 4, 1018-1031.	4.7	Ο