Muhammad Remanul Islam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3216290/publications.pdf

Version: 2024-02-01

52 papers 2,102 citations

393982 19 h-index 243296 44 g-index

54 all docs

54 docs citations

54 times ranked 2078 citing authors

#	Article	IF	CITATIONS
1	PERFORMANCE EVALUATION OF ADVANCED ENERGY STORAGE SYSTEMS: A REVIEW. Energy and Environment, 2023, 34, 1094-1141.	2.7	11
2	Recent advancements in synthesis, properties, and applications of conductive polymers for electrochemical energy storage devices: A review. Polymer Engineering and Science, 2022, 62, 269-303.	1.5	67
3	Rheological and Mechanical Properties of Polyisobutylene Filled with Nanosilica, Zinc Oxide and Titanium Oxide. Advanced Structured Materials, 2022, , 271-287.	0.3	1
4	Effects of chemical modification on the performance evaluation of photoinitiated, dispersion-polymerized poly(methyl methacrylate- <i>co</i> -ethylene glycol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 29, 362-372.	0 622 Td ((dimethacrylat
5	Mechanical and thermal properties of <scp>fishboneâ€based < /scp>epoxy composites: The effects of thermal treatment. Polymer Composites, 2021, 42, 1224-1234.</scp>	2.3	22
6	Influence of hydration on the mechanical, structural, thermal, and morphological properties of cement filled epoxy composites. Journal of Vinyl and Additive Technology, 2021, 27, 119-126.	1.8	9
7	Degradation analysis of epoxy resin composites reinforced with bioprotein: Effects of hydrolysis using papain and bromelain. Polymer Composites, 2021, 42, 2717-2727.	2.3	13
8	Recent advances of the graphite exfoliation processes and structural modification of graphene: a review. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	17
9	Mechanical, structural, thermal and morphological properties of epoxy composites filled with chicken eggshell and inorganic CaCO3 particles. Polymer Bulletin, 2020, 77, 805-821.	1.7	42
10	Mechanical and thermal properties of snail shell particles-reinforced bisphenol-A bio-composites. Polymer Bulletin, 2020, 77, 2573-2589.	1.7	24
11	Comparative analysis of the properties: Microcrystalline cellulose fiber polyamide composites filled with ethylene copolymer and olefin elastomer. Polymers and Polymer Composites, 2020, 28, 242-251.	1.0	O
12	Rheological and antimicrobial properties of epoxy-based hybrid nanocoatings. Polymer Testing, 2020, 81, 106202.	2.3	18
13	Effect of preheat and encapsulation of steel particles on the interaction with Bisphenol A composites. Polymer Testing, 2020, 89, 106611.	2.3	3
14	Effects of luffa and glass fibers in polyurethane-based ternary sandwich composites for building materials. SN Applied Sciences, 2020, 2, 1.	1.5	10
15	The effects of sintering on the properties of epoxy composites reinforced with chicken bone-based hydroxyapatites. Polymer Testing, 2019, 78, 105987.	2.3	28
16	The effects of anionic surfactant on the mechanical, thermal, structure and morphological properties of epoxy–MWCNT composites. Polymer Bulletin, 2019, 76, 5919-5938.	1.7	15
17	Effects of nanosilica and titanium oxide on the performance of epoxy–amine nanocoatings. Journal of Applied Polymer Science, 2019, 136, 47901.	1.3	14
18	Effect of Accelerated Weathering on Physico-Mechanical Properties of Polylactide Bio-Composites. Journal of Polymers and the Environment, 2019, 27, 942-955.	2.4	22

#	Article	IF	Citations
19	Optimization of reaction parameters of esterification on the synthesis of palm oil-based alkyds using response surface methods. IOP Conference Series: Materials Science and Engineering, 2019, 634, 012038.	0.3	1
20	Effects of nano- and micro-sized inorganic filers on the performance of epoxy hybrid nanocoatings. Polymers and Polymer Composites, 2019, 27, 82-91.	1.0	6
21	Acidâ€Based Surfactantâ€Aided Dispersion of Multiâ€Walled Carbon Nanotubes in Epoxyâ€Based Nanocomposites. Polymer Engineering and Science, 2019, 59, E80.	1.5	16
22	Mechanical, structural, thermal and morphological properties of a protein (fish scale)-based bisphenol-A composites. Polymer Testing, 2019, 74, 7-13.	2.3	23
23	Thermoâ€mechanical properties of glass fiber and functionalized multiâ€walled carbon nanotubes filled polyester composites. Polymer Composites, 2019, 40, E1235.	2.3	9
24	Mechanical, interfacial, and fracture characteristics of poly (lactic acid) and <i>Moringa oleifera</i> fiber composites. Advances in Polymer Technology, 2018, 37, 1665-1673.	0.8	2
25	Dispersion characteristics of hydroxyl and carboxyl-functionalized multi-walled carbon nanotubes in polyester nanocomposites. Journal of Polymer Engineering, 2018, 38, 759-765.	0.6	7
26	Effects of variation of steric repulsion between multiwall carbon nanotubes and anionic surfactant in epoxy nanocomposites. Journal of Applied Polymer Science, 2018, 135, 46883.	1.3	18
27	Effects of nanosilica, zinc oxide, titatinum oxide on the performance of epoxy hybrid nanocoating in presence of rubber latex. Polymer Testing, 2018, 70, 197-207.	2.3	28
28	Characterization of polyamide 6.10 composites incorporated with microcrystalline cellulose fiber: Effects of fiber loading and impact modifier. Advances in Polymer Technology, 2018, 37, 3412-3420.	0.8	9
29	Characterization of microwave-treated oil palm empty fruit bunch/glass fibre/polypropylene composites. Journal of Thermoplastic Composite Materials, 2017, 30, 986-1002.	2.6	25
30	Effects of zinc oxide on pretreated multiwalledâ€carbonâ€nanotubeâ€reinforced biobased polyesters. Journal of Applied Polymer Science, 2017, 134, .	1.3	10
31	Dissimilar welding of A7075-T651 and AZ31B alloys by gas metal arc plug welding method. International Journal of Advanced Manufacturing Technology, 2017, 88, 2773-2783.	1.5	34
32	Effect of Curing on Hydrolytic Degradation of Montmorillonite Nanoclays Filled Biobased Polyesters. Polymers From Renewable Resources, 2017, 8, 43-60.	0.8	0
33	Characterization of multiwalled carbon nanotube filled, palmâ€oilâ€based polyalkyds: Effects of loading and ⟨i⟩in situ⟨ i⟩ reaction. Journal of Applied Polymer Science, 2016, 133, .	1.3	14
34	Polyurethane types, synthesis and applications – a review. RSC Advances, 2016, 6, 114453-114482.	1.7	1,036
35	Effects of fiberâ€surface treatment on the properties of hybrid composites prepared from oil palm empty fruit bunch fibers, glass fibers, and recycled polypropylene. Journal of Applied Polymer Science, 2016, 133, .	1.3	13
36	Dispersion of montmorillonite nanoclays and their effects on the thermomechanical, structural and drying properties of palm oil based coating. Progress in Organic Coatings, 2016, 91, 17-24.	1.9	19

#	Article	IF	CITATIONS
37	The effects of wettability, shear strength, and Weibull characteristics of fiber-reinforced poly(lactic) Tj ETQq1 10.	784314 rg	BT/Overlock
38	Control of biodegradability in a natural fibre based nanocomposite as a function of impregnated copper nanoparticles. RSC Advances, 2016, 6, 28937-28946.	1.7	6
39	Effects of reinforcing arrangement of kenaf fibres into unsaturated polyester for improved properties. Journal of Mechanical Engineering and Sciences, 2016, 10, 2020-2030.	0.3	7
40	Effects of poly(dimethyl siloxane) on the water absorption and natural degradation of poly(lactic) Tj ETQq0 0 0 rg	BT.¦Overlo	ck 10 Tf 50 (
41	The effects of five different types of acid anhydrides and incorporation of montmorillonite nanoclays on thermosetting resins. Polymer Bulletin, 2015, 72, 3007-3030.	1.7	9
42	Preparation and Characterization of Poly(lactic acid)-Based Composites Reinforced with Poly Dimethyl Siloxane/Ultrasound-Treated Oil Palm Empty Fruit Bunch. Polymer-Plastics Technology and Engineering, 2015, 54, 1321-1333.	1.9	24
43	Alkyd Based Resin from Non-drying Oil. Procedia Engineering, 2014, 90, 78-88.	1.2	34
44	Structures and properties of injection-molded biodegradable poly(lactic acid) nanocomposites prepared with untreated and treated multiwalled carbon nanotubes. Polymer Engineering and Science, 2014, 54, 317-326.	1.5	32
45	Characterization of alkali-treated kenaf fibre-reinforced recycled polypropylene composites. Journal of Thermoplastic Composite Materials, 2014, 27, 909-932.	2.6	36
46	Fibre surface modifications through different treatments with the help of design expert software for natural fibre-based biocomposites. Journal of Composite Materials, 2014, 48, 1887-1899.	1.2	22
47	Development of vegetableâ€oilâ€based polymers. Journal of Applied Polymer Science, 2014, 131, .	1.3	156
48	Characterization of oil palm empty fruit bunch and glass fibre reinforced recycled polypropylene hybrid composites. Fibers and Polymers, 2014, 15, 1523-1530.	1.1	25
49	Study of Resistance Spot Welding Between AISI 301 Stainless Steel and AISI 1020 Carbon Steel Dissimilar Alloys. Journal of Mechanical Engineering and Sciences, 2014, 6, 793-806.	0.3	12
50	Crystalline morphology and properties of multi-walled carbon nanotube filled isotactic polypropylene nanocomposites: Influence of filler size and loading. Composites Part A: Applied Science and Manufacturing, 2013, 52, 70-79.	3.8	45
51	Optimal performances of ultrasound treated kenaf fiber reinforced recycled polypropylene composites as demonstrated by response surface method. Journal of Applied Polymer Science, 2013, 128, 2847-2856.	1.3	28
52	Preparation and characterization of natural silk fiber-reinforced polypropylene and synthetic E-glass fiber-reinforced polypropylene composites: a comparative study. Journal of Composite Materials, 2011, 45, 2301-2308.	1.2	27