

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3215976/publications.pdf Version: 2024-02-01

LINC SUM

#	Article	IF	CITATIONS
1	Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China. Ecotoxicology and Environmental Safety, 2015, 117, 132-140.	2.9	115
2	Enhanced Stability of Pd/ZnO Catalyst for CO Oxidative Coupling to Dimethyl Oxalate: Effect of Mg ²⁺ Doping. ACS Catalysis, 2015, 5, 4410-4417.	5.5	84
3	A New Fluorinated Polysiloxane with Good Optical Properties and Low Dielectric Constant at High Frequency Based on Easily Available Tetraethoxysilane (TEOS). Macromolecules, 2017, 50, 9394-9402.	2.2	79
4	Fluorinated and Thermo-Cross-Linked Polyhedral Oligomeric Silsesquioxanes: New Organic–Inorganic Hybrid Materials for High-Performance Dielectric Application. ACS Applied Materials & Interfaces, 2017, 9, 12782-12790.	4.0	71
5	Sustainable alternative to bisphenol A epoxy resin: high-performance recyclable epoxy vitrimers derived from protocatechuic acid. Polymer Chemistry, 2020, 11, 4500-4506.	1.9	67
6	Postpolymerization of Functional Organosiloxanes: An Efficient Strategy for Preparation of Low- <i>k</i> Material with Enhanced Thermostability and Mechanical Properties. Macromolecules, 2014, 47, 6311-6315.	2.2	61
7	Benzocyclobutene-functionalized poly(m-phenylene): A novel polymer with low dielectric constant and high thermostability. Polymer, 2014, 55, 3628-3633.	1.8	56
8	Low Dielectric Fluorinated Polynorbornene with Good Thermostability and Transparency Derived from a Biobased Allylphenol (Eugenol). ACS Sustainable Chemistry and Engineering, 2019, 7, 4078-4086.	3.2	51
9	A Low-Dielectric Polymer Derived from a Biorenewable Phenol (Eugenol). ACS Sustainable Chemistry and Engineering, 2018, 6, 13518-13523.	3.2	49
10	Postpolymerization of a Fluorinated and Reactive Poly(aryl ether): An Efficient Way To Balance the Solubility and Solvent Resistance of the Polymer. ACS Applied Materials & Interfaces, 2014, 6, 20437-20443.	4.0	46
11	A novel one-pot synthesized organosiloxane: synthesis and conversion to directly thermo-crosslinked polysiloxanes with low dielectric constants and excellent thermostability. Polymer Chemistry, 2015, 6, 5984-5988.	1.9	46
12	Asymmetric Total Synthesis of Mycoleptodiscinâ€A. Angewandte Chemie - International Edition, 2015, 54, 6878-6882.	7.2	46
13	Conversion of a Biorenewable Plant Oil (Anethole) to a New Fluoropolymer with Both Low Dielectric Constant and Low Water Uptake. ACS Sustainable Chemistry and Engineering, 2016, 4, 4451-4456.	3.2	46
14	New Triazine-Based Polymers with Low Dielectric Constants and High Thermostability Derived from Biorenewable Anethole and Thermocrosslinkable Benzocyclobutene. ACS Sustainable Chemistry and Engineering, 2018, 6, 5620-5626.	3.2	44
15	Perfluorocyclobutyl-based polymers for functional materials. Materials Chemistry Frontiers, 2019, 3, 1280-1301.	3.2	44
16	Phosphorus- and Sulfur-Containing High-Refractive-Index Polymers with High <i>T</i> _g and Transparency Derived from a Bio-Based Aldehyde. Macromolecules, 2020, 53, 125-131.	2.2	43
17	Intrinsic High Refractive Index Siloxane–Sulfide Polymer Networks Having High Thermostability and Transmittance via Thiol–Ene Cross-Linking Reaction. Macromolecules, 2018, 51, 7567-7573. 	2.2	40
18	High-Performance Polyimides with High <i>T</i> _g and Excellent Dimensional Stability at High Temperature Prepared via a Cooperative Action of Hydrogen-Bond Interaction and Cross-Linking Reaction. ACS Applied Polymer Materials, 2019, 1, 2099-2107.	2.0	40

#	Article	IF	CITATIONS
19	Gel–Sol Transition of Vanillin-Based Polyimine Vitrimers: Imparting Vitrimers with Extra Welding and Self-Healing Abilities. ACS Applied Polymer Materials, 2020, 2, 295-303.	2.0	39
20	New Fluoropolymers Having Both Low Water Uptake and a Low Dielectric Constant. Macromolecular Chemistry and Physics, 2015, 216, 2302-2308.	1.1	38
21	High Performance Polymer Derived from a Biorenewable Plant Oil (Anethole). ACS Sustainable Chemistry and Engineering, 2017, 5, 2578-2584.	3.2	38
22	Lightâ€Switchable Singleâ€Walled Carbon Nanotubes Based on Host–Guest Chemistry. Advanced Functional Materials, 2013, 23, 5010-5018.	7.8	37
23	Facile conversion of plant oil (anethole) to a high-performance material. Polymer Chemistry, 2017, 8, 2010-2015.	1.9	37
24	Biobased Anethole-Functionalized Poly(phenylene oxides): New Low Dielectric Materials with High <i>T</i> _g and Good Dimensional Stability. ACS Sustainable Chemistry and Engineering, 2018, 6, 9277-9282.	3.2	36
25	A Fluorinated Thermocrosslinkable Organosiloxane: A New Low <i>â€k</i> Material at High Frequency with Low Water Uptake. Macromolecular Rapid Communications, 2021, 42, e2000600.	2.0	36
26	Low-Dielectric Polymers Derived From Biomass. ACS Applied Polymer Materials, 2021, 3, 2835-2848.	2.0	36
27	Low Dielectric Polymers with High Thermostability Derived from Biobased Vanillin. ACS Sustainable Chemistry and Engineering, 2020, 8, 15013-15019.	3.2	35
28	Fluoro-containing Polysiloxane Thermoset with Good Thermostability and Acid Resistance Based on the Renewable Multifunctional Vanillin. ACS Sustainable Chemistry and Engineering, 2019, 7, 7304-7311.	3.2	34
29	A new fluoropolymer having triazine rings as a dielectric material: synthesis and properties. Polymer Chemistry, 2017, 8, 6173-6180.	1.9	32
30	s-Triazine-based functional monomers with thermocrosslinkable propargyl units: Synthesis and conversion to the heat-resistant polymers. Polymer, 2016, 102, 301-307.	1.8	31
31	A novel inorganic–organic hybrid for detection of nitrite anions with extremely high sensitivity and selectivity. Journal of Materials Chemistry, 2012, 22, 16742.	6.7	30
32	Biodegradable thermal- and redox-responsive poly(<scp>l</scp> -glutamate) with Y-shaped oligo(ethylene glycol) side-chain and tunable phase transition temperature. RSC Advances, 2016, 6, 70243-70250.	1.7	30
33	Benzocyclobutene resin with fluorene backbone: a novel thermosetting material with high thermostability and low dielectric constant. RSC Advances, 2014, 4, 39884-39888.	1.7	29
34	Active Pd(<scp>ii</scp>) complexes: enhancing catalytic activity by ligand effect for carbonylation of methyl nitrite to dimethyl carbonate. Catalysis Science and Technology, 2017, 7, 3785-3790.	2.1	29
35	CO direct esterification to dimethyl oxalate and dimethyl carbonate: the key functional motifs for catalytic selectivity. Nanoscale, 2020, 12, 20131-20140.	2.8	29
36	High performance low dielectric polysiloxanes with high thermostability and low water uptake. Materials Chemistry Frontiers, 2018, 2, 1397-1402.	3.2	28

#	Article	IF	CITATIONS
37	Cross-Linkable Fluorinated Polynorbornene with High Thermostability and Low Dielectric Constant at High Frequency. ACS Applied Polymer Materials, 2020, 2, 768-774.	2.0	28
38	Understanding how intrinsic micro-pores affect the dielectric properties of polymers: an approach to synthesize ultra-low dielectric polymers with bulky tetrahedral units as cores. Polymer Chemistry, 2020, 11, 2674-2680.	1.9	27
39	Biomass materials derived from anethole: conversion and application. Polymer Chemistry, 2020, 11, 954-963.	1.9	26
40	A bio-based low dielectric material at a high frequency derived from resveratrol. Polymer Chemistry, 2021, 12, 402-407.	1.9	24
41	An effective strategy for the preparation of intrinsic low- <i>k</i> and ultralow-loss dielectric polysiloxanes at high frequency by introducing trifluoromethyl groups into the polymers. Polymer Chemistry, 2020, 11, 6163-6170.	1.9	23
42	An Xâ€shaped Ï€â€conjugated polymer comprising of fluorene units and anthracene units with high efficiency. Synthesis and optical and electrochemical properties. Journal of Polymer Science Part A, 2008, 46, 5616-5625.	2.5	22
43	A facile conversion of a bio-based resveratrol to the high-performance polymer with high Tg and high char yield. Polymer, 2020, 200, 122570.	1.8	22
44	Boosting Interfacial Electron Transfer between Pd and ZnTi-LDH via Defect Induction for Enhanced Metal–Support Interaction in CO Direct Esterification Reaction. ACS Applied Materials & Interfaces, 2021, 13, 24856-24864.	4.0	22
45	A Bioâ€Based Allylphenol (Eugenol)â€Functionalized Fluorinated Maleimide with Low Dielectric Constant and Low Water Uptake. Macromolecular Chemistry and Physics, 2018, 219, 1800252.	1.1	21
46	A fluoropolymer with a low dielectric constant at a high frequency derived from bio-based anethole. Polymer Chemistry, 2021, 12, 4501-4507.	1.9	21
47	Contribution of Hydrogen-Bond Nanoarchitectonics to Switchable Photothermal-Mechanical Properties of Bioinorganic Fibers. CCS Chemistry, 2023, 5, 1242-1250.	4.6	21
48	Dendrimeric organosiloxane with thermopolymerizable –OCFĩ€CF ₂ groups as the arms: synthesis and transformation to the polymer with both ultra-low k and low water uptake. Polymer Chemistry, 2016, 7, 3378-3382.	1.9	19
49	Post-functionalization of novolac resins by introducing thermo-crosslinkable –OCFF ₂ groups as the side chains: a new strategy for production of thermosetting polymers without releasing volatiles. Polymer Chemistry, 2016, 7, 4313-4316.	1.9	19
50	New Colorless and Transparent Poly(ether imide) Derived from a Biobased Plant Oil (Anethole): Synthesis and Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 11728-11734.	3.2	18
51	Alkyl side chain driven tunable red–yellow–green emission: Investigation on the new Ï€â€conjugated polymers comprising of 2,7â€carbazole unit and 2,1,3â€benzoâ€ŧhiadiazole units with different side chains. Journal of Polymer Science Part A, 2008, 46, 1376-1387.	2.5	17
52	Variable Polymer Properties Driven by Substituent Groups: Investigation on a Trifluorovinyletherâ€Functionalized Polyfluorene at the Câ€9 Position. Macromolecular Chemistry and Physics, 2015, 216, 742-748.	1.1	17
53	Resveratrol-Based Fluorinated Materials with High Thermostability and Good Dielectric Properties at High Frequency. ACS Sustainable Chemistry and Engineering, 2020, 8, 16905-16911.	3.2	17
54	Zn2+ stabilized Pd clusters with enhanced covalent metal–support interaction via the formation of Pd–Zn bonds to promote catalytic thermal stability. Nanoscale, 2020, 12, 14825-14830.	2.8	17

#	Article	IF	CITATIONS
55	A new glass-forming molecule having a fluorene skeleton: synthesis and conversion to the polymer with a low dielectric constant, high hydrophobicity and thermostability. Polymer Chemistry, 2016, 7, 5925-5929.	1.9	16
56	A Novel Thermoâ€Polymerizable Aromatic Diamine: Synthesis and Application in Enhancement of the Properties of Conventional Polyimides. Macromolecular Chemistry and Physics, 2016, 217, 856-862.	1.1	16
57	High Performance Low Dielectric Constant Polymer with Good Filmâ€Forming Ability Developed from Renewable Plant Oil (Anethole). Macromolecular Chemistry and Physics, 2018, 219, 1800133.	1.1	16
58	Building Block Symmetry Relegation Induces Mesopore and Abundant Open-Metal Sites in Metal–Organic Frameworks for Cancer Therapy. CCS Chemistry, 2022, 4, 996-1006.	4.6	16
59	Graft Copolymerization of Methyl Methacrylate onto Silk Sericin Initiated by Ceric Ammonium Nitrate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 899-907.	1.2	15
60	A novel post-polymerizable polynorbornene prepared <i>via</i> ROMP: easy synthesis and conversion into a free-standing film with high <i>T</i> _g and low dielectric constant. Materials Chemistry Frontiers, 2018, 2, 1467-1474.	3.2	15
61	A biobased low dielectric resin derived from vanillin and guaiacol. Polymer Chemistry, 2021, 12, 766-770.	1.9	15
62	Graft copolymerization of methyl acrylate onto silk sericin initiated bytert-butyl hydroperoxide. Polymer International, 2006, 55, 1350-1354.	1.6	14
63	Temperature-Switching During Irradiation as a Test for ELDRS in Linear Bipolar Devices. IEEE Transactions on Nuclear Science, 2019, 66, 199-206.	1.2	14
64	The bio-based phthalocyanine resins with high Tg and high char yield derived from vanillin. Polymer, 2021, 224, 123723.	1.8	13
65	A fluorinated low dielectric polymer at high frequency derived from allylphenol and benzocyclobutene by a facile route. European Polymer Journal, 2022, 163, 110943.	2.6	13
66	A new polymer with low dielectric constant based on trifluoromethyl-substituted arene: preparation and properties. RSC Advances, 2014, 4, 40782-40787.	1.7	12
67	Propargyl ether-functionalized poly(m-phenylene): a new precursor for the preparation of polymers with high modulus and high Tg. RSC Advances, 2015, 5, 23009-23014.	1.7	12
68	Biobased Anethole/Polyacrylate Cross-Linked Materials with Good Transparency and High Thermostability. ACS Sustainable Chemistry and Engineering, 2018, 6, 3575-3579.	3.2	12
69	Efficient Improvement of Fluorescence Quantum Yield of Fluoreneethynylene-Based Polymers by Introducing a Perfluoroalkylbenzene Unit to the Polymers. Macromolecular Rapid Communications, 2007, 28, 772-779.	2.0	11
70	Tuning the Structure and Hydrolysis Stability of Calcium Metal–Organic Frameworks through Integrating Carboxylic/Phosphinic/Phosphonic Groups in Building Blocks. Crystal Growth and Design, 2020, 20, 8021-8027.	1.4	10
71	Fluorinated Benzocyclobutene-Based Low- <i>k</i> Polymer at High Frequency. ACS Applied Polymer Materials, 2022, 4, 842-848.	2.0	10
72	A spiro-centered thermopolymerizable fluorinated macromonomer: synthesis and conversion to the high performance polymer. RSC Advances, 2017, 7, 18861-18866.	1.7	9

#	Article	IF	CITATIONS
73	New organic–inorganic hybrid materials: high refractive index polymers based on cyclotriphophazene with high thermostability and transparency. Materials Chemistry Frontiers, 2021, 5, 5826-5832.	3.2	9
74	Oxygen Vacancy in CeO2 Facilitate the Catalytic Activity of Pd/CeO2 for CO Direct Esterification to Dimethyl Oxalate. Catalysis Letters, 2022, 152, 503-512.	1.4	9
75	A highly heat-resistant phthalocyanine resin based on a bio-based anethole. European Polymer Journal, 2021, 157, 110645.	2.6	9
76	Comparative Study of Factor Xa Inhibitors Using Molecular Docking/SVM/HQSAR/3D-QSAR Methods. QSAR and Combinatorial Science, 2006, 25, 25-45.	1.5	8
77	Radiation Effects and Mechanisms on Switching Characteristics of Silicon Carbide Power MOSFETs. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 1423-1429.	0.1	8
78	A New Fourâ€Arm Organosiloxane with Thermopolymerizable Trifluorovinyl ether Groups: Synthesis and Conversion to the Polymer with both Low Dielectric Constant and Low Water Uptake. Macromolecular Chemistry and Physics, 2017, 218, 1700010.	1.1	7
79	Study of the influence of gamma irradiation on long-term reliability of SiC MOSFET. Radiation Effects and Defects in Solids, 2020, 175, 559-566.	0.4	7
80	Facile synthesis of ternary homogeneous ZnS _{1â^'x} Se _x nanosheets with tunable bandgaps. CrystEngComm, 2014, 16, 6823-6826.	1.3	6
81	Using a Temperature-Switching Approach to Evaluate Low-Dose-Rate Ionizing Radiation Effects on SET in Linear Bipolar Circuits. IEEE Transactions on Nuclear Science, 2019, 66, 1557-1565.	1.2	2
82	Enhancing the activity of Pd/Zn–Al–O catalysts for esterification of CO to dimethyl oxalate <i>via</i> increasing oxygen defects by tuning the Zn/Al ratio. Catalysis Science and Technology, 2022, 12, 4273-4280.	2.1	2
83	Discovery of anti‧ARS coronavirus drug based on molecular docking and database screening. Chinese Journal of Chemistry, 2004, 22, 882-887.	2.6	0
84	Smart Nanotubes: Light-Switchable Single-Walled Carbon Nanotubes Based on Host-Guest Chemistry (Adv. Funct. Mater. 40/2013). Advanced Functional Materials, 2013, 23, 5009-5009.	7.8	0
85	Macromol. Chem. Phys. 7/2015. Macromolecular Chemistry and Physics, 2015, 216, 812-812.	1.1	0
86	Macromol. Chem. Phys. 7/2016. Macromolecular Chemistry and Physics, 2016, 217, 924-924.	1.1	0
87	Investigation of the Degradation Rate in DPSA Bipolar Transistor under Gamma Irradiation. , 2018, , .		0
88	Simulation of Synergism Effect Using Temperature Switching Irradiation on Bipolar Comparator. Chinese Physics Letters, 2018, 35, 088401.	1.3	0
89	Influence of enhanced low dose rate sensitivity on single-event transient degradation in the LM158 bipolar operational amplifier. AIP Advances, 2021, 11, 055311.	0.6	0