Anders Rhod Larsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3215911/publications.pdf

Version: 2024-02-01

50244 64755 7,018 130 46 79 citations h-index g-index papers 132 132 132 6406 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infectious Diseases, The, 2011, 11, 595-603.	4.6	751
2	Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251. Clinical Microbiology and Infection, 2012, 18, 395-400.	2.8	322
3	Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nature Microbiology, 2018, 3, 1175-1185.	5.9	206
4	SCC <i>mec</i> Finder, a Web-Based Tool for Typing of Staphylococcal Cassette Chromosome <i>mec</i> in Staphylococcus aureus Using Whole-Genome Sequence Data. MSphere, 2018, 3, .	1.3	197
5	Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel <i>mecA</i> homologue <i>mecC</i> . EMBO Molecular Medicine, 2013, 5, 509-515.	3.3	192
6	Whole-Genome Sequencing for Routine Pathogen Surveillance in Public Health: a Population Snapshot of Invasive Staphylococcus aureus in Europe. MBio, 2016, 7, .	1.8	192
7	Comparing Whole-Genome Sequencing with Sanger Sequencing for <i>spa</i> Typing of Methicillin-Resistant Staphylococcus aureus. Journal of Clinical Microbiology, 2014, 52, 4305-4308.	1.8	179
8	Livestock Origin for a Human Pandemic Clone of Community-Associated Methicillin-Resistant Staphylococcus aureus. MBio, 2013, 4, .	1.8	177
9	The newly described mecA homologue, mecALGA251, is present in methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. Journal of Antimicrobial Chemotherapy, 2012, 67, 2809-2813.	1.3	153
10	Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clinical Microbiology and Infection, 2013, 19, E16-E22.	2.8	153
11	Epidemiology of Emerging Methicillin-Resistant Staphylococcus aureus (MRSA) in Denmark: a Nationwide Study in a Country with Low Prevalence of MRSA Infection. Journal of Clinical Microbiology, 2005, 43, 1836-1842.	1.8	152
12	Emergence of methicillin resistance predates the clinical use of antibiotics. Nature, 2022, 602, 135-141.	13.7	138
13	Novel Types of Staphylococcal Cassette Chromosome <i>mec</i> Elements Identified in Clonal Complex 398 Methicillin-Resistant Staphylococcus aureus Strains. Antimicrobial Agents and Chemotherapy, 2011, 55, 3046-3050.	1.4	136
14	Origin, evolution, and global transmission of community-acquired <i>Staphylococcus aureus</i> ST8. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10596-E10604.	3.3	136
15	Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011. Eurosurveillance, 2015, 20, .	3.9	130
16	Increasing incidence but decreasing in-hospital mortality of adult Staphylococcus aureus bacteraemia between 1981 and 2000. Clinical Microbiology and Infection, 2007, 13, 257-263.	2.8	129
17	Origin and Evolution of European Community-Acquired Methicillin-Resistant Staphylococcus aureus. MBio, 2014, 5, e01044-14.	1.8	112
18	Distinct Determinants of Human Immunodeficiency Virus Type 1 RNA and DNA Loads in Vaginal and Cervical Secretions. Journal of Infectious Diseases, 1998, 177, 1214-1220.	1.9	111

#	Article	IF	CITATIONS
19	Evaluation of a cefoxitin 30 Âg disc on Iso-Sensitest agar for detection of methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2003, 52, 204-207.	1.3	100
20	Novel SCC mec type XIII (9A) identified in an ST152 methicillin-resistant Staphylococcus aureus. Infection, Genetics and Evolution, 2018, 61, 74-76.	1.0	97
21	Development of a real-time quadruplex PCR assay for simultaneous detection of nuc, Panton-Valentine leucocidin (PVL), mecA and homologue mecALGA251. Journal of Antimicrobial Chemotherapy, 2012, 67, 2338-2341.	1.3	93
22	Characterization of the Epidemic European Fusidic Acid-Resistant Impetigo Clone of Staphylococcus aureus. Journal of Clinical Microbiology, 2007, 45, 1505-1510.	1.8	90
23	Emergence and Characterization of Community-Associated Methicillin-Resistant <i>Staphyloccocus aureus</i> Infections in Denmark, 1999 to 2006. Journal of Clinical Microbiology, 2009, 47, 73-78.	1.8	89
24	Evidence for Human Adaptation and Foodborne Transmission of Livestock-Associated Methicillin-Resistant $\langle i \rangle$ Staphylococcus aureus $\langle i \rangle$: Table 1 Clinical Infectious Diseases, 2016, 63, 1349-1352.	2.9	89
25	spa typing directly from a mecA, spa and pvl multiplex PCR assay—a cost-effective improvement for methicillin-resistant Staphylococcus aureus surveillance. Clinical Microbiology and Infection, 2008, 14, 611-614.	2.8	88
26	Molecular Epidemiology and Antimicrobial Susceptibility of Clinical Staphylococcus aureus from Healthcare Institutions in Ghana. PLoS ONE, 2014, 9, e89716.	1.1	82
27	Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. Journal of Antimicrobial Chemotherapy, 2014, 69, 594-597.	1.3	80
28	Rapid Differentiation between Livestock-Associated and Livestock-Independent Staphylococcus aureus CC398 Clades. PLoS ONE, 2013, 8, e79645.	1.1	78
29	Emergence of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Bloodstream Infections in Denmark. Clinical Infectious Diseases, 2017, 65, 1072-1076.	2.9	78
30	Rapid Increase of Genetically Diverse Methicillin-Resistant <i>Staphylococcus aureus,</i> Copenhagen, Denmark. Emerging Infectious Diseases, 2007, 13, 1533-1540.	2.0	76
31	Epidemiology of European Community-Associated Methicillin-Resistant <i>Staphylococcus aureus</i> Clonal Complex 80 Type IV Strains Isolated in Denmark from 1993 to 2004. Journal of Clinical Microbiology, 2008, 46, 62-68.	1.8	74
32	Drivers and Dynamics of Methicillin-Resistant Livestock-Associated Staphylococcus aureus CC398 in Pigs and Humans in Denmark. MBio, 2018, 9, .	1.8	74
33	A Fusidic Acid-Resistant Epidemic Strain of Staphylococcus aureus Carries the fusB Determinant, whereas fusA Mutations Are Prevalent in Other Resistant Isolates. Antimicrobial Agents and Chemotherapy, 2004, 48, 3594-3597.	1.4	72
34	Carriage frequency, diversity and methicillin resistance of Staphylococcus aureus in Danish small ruminants. Veterinary Microbiology, 2013, 163, 110-115.	0.8	69
35	A Staphylococcus xylosus Isolate with a New <i>mecC</i> Allotype. Antimicrobial Agents and Chemotherapy, 2013, 57, 1524-1528.	1.4	67
36	A Common Variant of Staphylococcal Cassette Chromosome <i>mec</i> Type IVa in Isolates from Copenhagen, Denmark, Is Not Detected by the BD GeneOhm Methicillin-Resistant <i>Staphylococcus aureus</i> Assay. Journal of Clinical Microbiology, 2009, 47, 1524-1527.	1.8	64

#	Article	IF	Citations
37	Phenotypic Detection of Methicillin Resistance in Staphylococcus aureus by Disk Diffusion Testing and Etest on Mueller-Hinton Agar. Journal of Clinical Microbiology, 2006, 44, 4395-4399.	1.8	62
38	Methicillin-Resistant Staphylococcus aureus ST9 in Pigs in Thailand. PLoS ONE, 2012, 7, e31245.	1.1	62
39	Changing Epidemiology of Pediatric Staphylococcus aureus Bacteremia in Denmark From 1971 Through 2000. Pediatric Infectious Disease Journal, 2007, 26, 398-405.	1.1	59
40	Use of Vitek 2 Antimicrobial Susceptibility Profile To Identify <i>mecC</i> in Methicillin-Resistant Staphylococcus aureus. Journal of Clinical Microbiology, 2013, 51, 2732-2734.	1.8	53
41	Molecular Epidemiology of Panton-Valentine Leukocidin-Positive Staphylococcus aureus in Spain: Emergence of the USA300 Clone in an Autochthonous Population. Journal of Clinical Microbiology, 2011, 49, 433-436.	1.8	52
42	Insights into Nasal Carriage of Staphylococcus aureus in an Urban and a Rural Community in Ghana. PLoS ONE, 2014, 9, e96119.	1.1	52
43	Stable incidence and continued improvement in short term mortality of Staphylococcus aureus bacteraemia between 1995 and 2008. BMC Infectious Diseases, 2012, 12, 260.	1.3	51
44	Survival of LA-MRSA in Dust from Swine Farms. Annals of Work Exposures and Health, 2018, 62, 147-156.	0.6	51
45	Genome investigations show host adaptation and transmission of LA-MRSA CC398 from pigs into Danish healthcare institutions. Scientific Reports, 2019, 9, 18655.	1.6	51
46	Phenotypic detection of mecC-MRSA: cefoxitin is more reliable than oxacillin. Journal of Antimicrobial Chemotherapy, 2014, 69, 133-135.	1.3	50
47	Transmission of Methicillin-Resistant Staphylococcus aureus to Human Volunteers Visiting a Swine Farm. Applied and Environmental Microbiology, 2017, 83, .	1.4	50
48	Distribution of Fusidic Acid Resistance Determinants in Methicillin-Resistant <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 1173-1176.	1.4	48
49	Risk and prognosis of Staphylococcus aureus bacteremia among individuals with and without end-stage renal disease: a Danish, population-based cohort study. BMC Infectious Diseases, 2015, 15, 6.	1.3	48
50	Genomic identification of cryptic susceptibility to penicillins and \hat{l}^2 -lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nature Microbiology, 2019, 4, 1680-1691.	5.9	47
51	Two Distinct Clones of Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA) with the Same USA300 Pulsed-Field Gel Electrophoresis Profile: a Potential Pitfall for Identification of USA300 Community-Associated MRSA. Journal of Clinical Microbiology, 2009, 47, 3765-3768.	1.8	46
52	Prevalence of nasal carriage and diversity of Staphylococcus aureus among inpatients and hospital staff at Korle Bu Teaching Hospital, Ghana. Journal of Global Antimicrobial Resistance, 2013, 1, 189-193.	0.9	45
53	Copresence oftet(K) andtet(M) in Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complex 398 Is Associated with Increased Fitness during Exposure to Sublethal Concentrations of Tetracycline. Antimicrobial Agents and Chemotherapy, 2016, 60, 4401-4403.	1.4	44
54	Range Expansion and the Origin of USA300 North American Epidemic Methicillin-Resistant <i>Staphylococcus aureus</i>	1.8	42

#	Article	IF	CITATIONS
55	Patients transferred from Libya to Denmark carried OXA-48-producing Klebsiella pneumoniae, NDM-1-producing Acinetobacter baumannii and meticillin-resistant Staphylococcus aureus. International Journal of Antimicrobial Agents, 2012, 40, 191-192.	1.1	41
56	Evaluation of cefoxitin 5 and 10 μg discs for the detection of methicillin resistance in staphylococci. Journal of Antimicrobial Chemotherapy, 2005, 55, 157-161.	1.3	40
57	A nationwide study of comorbidity and risk of reinfection after Staphylococcus aureus bacteraemia. Journal of Infection, 2013, 67, 199-205.	1.7	39
58	Carriage and Genetic Diversity of Methicillin-Resistant Staphylococcus aureus among Patients and Healthcare Workers in a Serbian University Hospital. PLoS ONE, 2015, 10, e0127347.	1.1	32
59	Genome Sequence of Staphylococcus aureus Strain 11819-97, an ST80-IV European Community-Acquired Methicillin-Resistant Isolate. Journal of Bacteriology, 2012, 194, 1625-1626.	1.0	31
60	European hedgehogs (Erinaceus europaeus) as a natural reservoir of methicillin-resistant Staphylococcus aureus carrying mecC in Denmark. PLoS ONE, 2019, 14, e0222031.	1.1	30
61	LA-MRSA CC398 in Dairy Cattle and Veal Calf Farms Indicates Spillover From Pig Production. Frontiers in Microbiology, 2019, 10, 2733.	1.5	30
62	Epidemiological differences between the UK and Ireland versus France in Staphylococcus aureus isolates resistant to fusidic acid from community-acquired skin and soft tissue infections. Journal of Antimicrobial Chemotherapy, 2008, 61, 589-594.	1.3	29
63	Incidence and Characterisation of Methicillin-Resistant Staphylococcus aureus (MRSA) from Nasal Colonisation in Participants Attending a Cattle Veterinary Conference in the UK. PLoS ONE, 2013, 8, e68463.	1.1	28
64	Methicillin-Resistant Staphylococcus aureus Colonization: A Three-Year Prospective Study in a Neonatal Intensive Care Unit in Italy. PLoS ONE, 2014, 9, e87760.	1.1	28
65	Evaluation of a Modular Multiplex-PCR Methicillin-Resistant Staphylococcus aureus Detection Assay Adapted for <i>mecC</i> Detection. Journal of Clinical Microbiology, 2013, 51, 1917-1919.	1.8	26
66	Methicillin-resistant Staphylococcus aureus strains from Ghana include USA300. Journal of Global Antimicrobial Resistance, 2015, 3, 26-30.	0.9	26
67	Long-term mortality and causes of death associated with Staphylococcus aureus bacteremia. A matched cohort study. Journal of Infection, 2016, 73, 346-357.	1.7	26
68	Long-term mortality after Staphylococcus aureus spondylodiscitis: A Danish nationwide population-based cohort study. Journal of Infection, 2014, 69, 252-258.	1.7	25
69	Age-Dependent Increase in Incidence of <i>Staphylococcus aureus</i> Bacteremia, Denmark, 2008–2015. Emerging Infectious Diseases, 2019, 25, .	2.0	25
70	Control of a methicillin-resistant Staphylococcus aureus (MRSA) outbreak in a day-care institution. Journal of Hospital Infection, 2006, 63, 84-92.	1.4	24
71	Multilocus Sequence Typing Scheme for Staphylococcus aureus: Revision of the <i>gmk</i> Locus. Journal of Clinical Microbiology, 2012, 50, 2538-2539.	1.8	24
72	International travel as source of a hospital outbreak with an unusual meticillin-resistant Staphylococcus aureus clonal complex 398, Denmark, 2016. Eurosurveillance, 2019, 24, .	3.9	22

#	Article	IF	Citations
73	Phage-Mediated Immune Evasion and Transmission of Livestock-Associated Methicillin-Resistant <i>Staphylococcus aureus</i> Ion Humans. Emerging Infectious Diseases, 2020, 26, .	2.0	21
74	Whole-genome sequencing of bloodstream Staphylococcus aureus isolates does not distinguish bacteraemia from endocarditis. Microbial Genomics, 2017, 3, .	1.0	21
75	Increased risk of venous thromboembolism within the first year after <i><scp>S</scp>taphylococcus aureus</i> bacteraemia: a nationwide observational matched cohort study. Journal of Internal Medicine, 2014, 275, 387-397.	2.7	20
76	Livestock-associated methicillin-resistant Staphylococcus aureus is widespread in farmed mink () Tj ETQq0 0	0 rgBT/Qverlo	ock 10 Tf 50 6
77	Signatures of cytoplasmic proteins in the exoproteome distinguish community- and hospital-associated methicillin-resistant <i>Staphylococcus aureus</i> USA300 lineages. Virulence, 2017, 8, 891-907.	1.8	19
78	Comparative genomic analysis of European and Middle Eastern community-associated methicillin-resistant Staphylococcus aureus (CC80:ST80-IV) isolates by high-density microarray. Clinical Microbiology and Infection, 2009, 15, 748-755.	2.8	18
79	Increasing Incidences and Clonal Diversity of Methicillin-Resistant Staphylococcus aureus in the Nordic Countries - Results From the Nordic MRSA Surveillance. Frontiers in Microbiology, 2021, 12, 668900.	1.5	18
80	Staphylococcal aureus Enterotoxin C and Enterotoxin-Like L Associated with Post-partum Mastitis. Frontiers in Microbiology, 2017, 8, 173.	1.5	16
81	Antibiotic resistance and molecular characteristics of Staphylococcus aureus isolated from backyard-raised pigs and pig workers. Tropical Animal Health and Production, 2018, 50, 1565-1571.	0.5	16
82	Human genetic variation in GLS2 is associated with development of complicated Staphylococcus aureus bacteremia. PLoS Genetics, 2018, 14, e1007667.	1.5	16
83	Whole-genome sequence profiling of antibiotic-resistant Staphylococcus aureus isolates from livestock and farm attendants in Ghana. Journal of Global Antimicrobial Resistance, 2020, 22, 527-532.	0.9	16
84	Evolution and Population Dynamics of Clonal Complex 152 Community-Associated Methicillin-Resistant <i>Staphylococcus aureus</i> . MSphere, 2020, 5, .	1.3	16
85	Association between susceptibility to photodynamic oxidation and the genetic background of Staphylococcus aureus. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 577-586.	1.3	15
86	Identification of a PVL-negative SCC mec -IVa sublineage of the methicillin-resistant Staphylococcus aureus CC80 lineage: understanding the clonal origin of CA-MRSA. Clinical Microbiology and Infection, 2018, 24, 273-278.	2.8	15
87	Controlling Transmission of MRSA to Humans During Short-Term Visits to Swine Farms Using Dust Masks. Frontiers in Microbiology, 2018, 9, 3361.	1.5	15
88	Diabetes increases the risk of disease and death due to <i>Staphylococcus aureus</i> bacteremia. A matched case-control and cohort study. Infectious Diseases, 2017, 49, 689-697.	1.4	15
89	Characterization of Staphylococcus aureus from Human Immunodeficiency Virus (HIV) patients in Accra, Ghana. Journal of Infection in Developing Countries, 2016, 10, 453-456.	0.5	14
90	Investigation of the human nasal microbiome in persons with long- and short-term exposure to methicillin-resistant Staphylococcus aureus and other bacteria from the pig farm environment. PLoS ONE, 2020, 15, e0232456.	1.1	13

#	Article	IF	Citations
91	National surveillance reveals findings of Panton–Valentine leukocidin positive meticillin-resistant Staphylococcus aureus in Serbia. Journal of Medical Microbiology, 2013, 62, 342-344.	0.7	13
92	Evaluation of a widely used culture-based method for detection of livestock-associated meticillin-resistant Staphylococcus aureus (MRSA), Denmark and Norway, 2014 to 2016. Eurosurveillance, 2017, 22, .	3.9	13
93	Rapid and high-resolution distinction of community-acquired and nosocomial Staphylococcus aureus isolates with identical pulsed-field gel electrophoresis patterns and spa types. International Journal of Medical Microbiology, 2013, 303, 70-75.	1.5	12
94	Detection of mecC -Positive Staphylococcus aureus: What To Expect from Immunological Tests Targeting PBP2a?. Journal of Clinical Microbiology, 2017, 55, 1961-1963.	1.8	12
95	Staphylococcus aureus Bacteremia in Children Aged 5-18 Years—Risk Factors in the New Millennium. Journal of Pediatrics, 2018, 203, 108-115.e3.	0.9	12
96	Increased risk of <i>Staphylococcus aureus</i> bacteremia in hemodialysisâ€"A nationwide study. Hemodialysis International, 2019, 23, 230-238.	0.4	12
97	Spread of LA-MRSA CC398 in Danish mink (Neovison vison) and mink farm workers. Veterinary Microbiology, 2020, 245, 108705.	0.8	12
98	Evaluation of different disk diffusion/media combinations for detection of methicillin resistance in Staphylococcus aureus and coagulase-negative staphylococci. Apmis, 2003, 111, 905-914.	0.9	11
99	Nasal and pharyngeal carriage of methicillin-resistant Staphylococcus sciuri among hospitalised patients and healthcare workers in a Serbian university hospital. PLoS ONE, 2017, 12, e0185181.	1.1	11
100	Increased risk of arterial thromboembolic events after Staphylococcus aureus bacteremia: A matched cohort study. Journal of Infection, 2015, 71, 167-178.	1.7	10
101	Staphylococcus aureus induces cell-surface expression of immune stimulatory NKG2D ligands on human monocytes. Journal of Biological Chemistry, 2020, 295, 11803-11821.	1.6	10
102	Vancomycin gene selection in the microbiome of urbanRattus norvegicusfrom hospital environment. Evolution, Medicine and Public Health, 2016, 2016, 219-226.	1.1	9
103	Dabigatran and the Risk of <i>Staphylococcus aureus</i> Bacteremia: A Nationwide Cohort Study. Clinical Infectious Diseases, 2021, 73, 480-486.	2.9	9
104	Heterogeneity of Staphylococcus epidermidis in prosthetic joint infections: time to reevaluate microbiological criteria?. European Journal of Clinical Microbiology and Infectious Diseases, 2022, 41, 87-97.	1.3	9
105	Genetic Variability in Beta-Defensins Is Not Associated with Susceptibility to Staphylococcus aureus Bacteremia. PLoS ONE, 2012, 7, e32315.	1.1	8
106	Airborne Spread of Methicillin Resistant Staphylococcus aureus From a Swine Farm. Frontiers in Veterinary Science, 2021, 8, 644729.	0.9	8
107	Dynamics of the Human Nasal Microbiota and Staphylococcus aureus CC398 Carriage in Pig Truck Drivers across One Workweek. Applied and Environmental Microbiology, 2021, 87, e0122521.	1.4	8
108	MRSA surveillance programmes worldwide: moving towards a harmonised international approach. International Journal of Antimicrobial Agents, 2022, 59, 106538.	1.1	8

#	Article	IF	CITATIONS
109	Methicillin-resistant Staphylococcus aureus biofilm formation on dacryocystorhinostomy silicone tubes depends on the genetic lineage. Graefe's Archive for Clinical and Experimental Ophthalmology, 2015, 253, 77-82.	1.0	7
110	Antibiotic susceptibility and molecular epidemiology of Panton–Valentine leukocidin-positive meticillin-resistant Staphylococcus aureus: An international survey. Journal of Global Antimicrobial Resistance, 2014, 2, 43-47.	0.9	6
111	European external quality assessments for identification, molecular typing and characterization of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2018, 73, 2662-2666.	1.3	6
112	Long-term persistence of a multi-resistant methicillin-susceptible Staphylococcus aureus (MR-MSSA) clone at a university hospital in southeast Sweden, without further transmission within the region. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 1415-1422.	1.3	5
113	Increased Age-Dependent Risk of Death Associated With lukF-PV-Positive Staphylococcus aureus Bacteremia. Open Forum Infectious Diseases, 2016, 3, ofw220.	0.4	5
114	Complete Genome Sequences of Methicillin-Resistant Staphylococcus aureus Strains 110900 and 128254, Two Representatives of the CRISPR-Cas-Carrying Sequence Type 630/ <i>spa</i> Type t4549 Lineage. Microbiology Resource Announcements, 2020, 9, .	0.3	5
115	Comparison of Automated Antimicrobial Susceptibility Testing Systems To Detect <i>mecC</i> Positive Methicillin-Resistant Staphylococcus aureus. Journal of Clinical Microbiology, 2017, 55, 3554-3556.	1.8	4
116	Whole Genome Sequencing and Antimicrobial Resistance of Staphylococcus aureus from Surgical Site Infections in Ghana. Pathogens, 2021, 10, 196.	1.2	4
117	Clinical Manifestations in Children with Staphylococcal Bacteremia Positive for Panton-Valentine Leucocidin. Pediatric Infectious Disease Journal, 2020, 39, e274-e276.	1.1	3
118	Evaluation of methods for detection of \hat{l}^2 -lactamase production in MSSA. Journal of Antimicrobial Chemotherapy, 2021, 76, 1487-1494.	1.3	3
119	Inhibitory Effect of Newly-Synthesized Chalcones on Hemolytic Activity of Methicillin-Resistant Staphylococcus aureus. Polish Journal of Microbiology, 2015, 64, 379-382.	0.6	3
120	Utility of a newly developed Mueller-Hinton E agar for the detection of MRSA carrying the novel mecA homologue mecC. Journal of Antimicrobial Chemotherapy, 2014, 70, 1256-7.	1.3	2
121	Ability of the GENSPEED (sup> \hat{A}^{\otimes} (sup>MRSA test kit to detect the novel (i>mecA (i>homologue (i>mecC (i>in (i>Staphylococcus aureus (i>. Apmis, 2015, 123, 478-481.	0.9	2
122	Variable performance of four commercial chromogenic media for detection of methicillin-resistant Staphylococcus aureus isolates harbouring mecC. International Journal of Antimicrobial Agents, 2017, 50, 263-265.	1.1	2
123	Increased risk of diabetes mellitus five years after an episode of <i>Staphylococcus aureus</i> bacteraemia. Infectious Diseases, 2019, 51, 512-518.	1.4	2
124	Arthritis Caused by MRSA CC398 in Patient without Animal Contact, Japan. Emerging Infectious Diseases, 2020, 26, 3104-3105.	2.0	2
125	Age-Dependent Increase in Incidence of <i>Staphylococcus aureus</i> Bacteremia, Denmark, 2008–2015. Emerging Infectious Diseases, 2019, 25, .	2.0	2
126	Presence of the epidemic European fusidic acid-resistant impetigo clone (EEFIC) of Staphylococcus aureus in Francejoint authors' response. Journal of Antimicrobial Chemotherapy, 2008, 63, 421-421.	1.3	0

#	Article	IF	CITATIONS
127	Importance of a Diverse Isolate Collection When Defining Genotype-Specific Mass Spectra in Staphylococcus aureus. Journal of Clinical Microbiology, 2014, 52, 2738-2739.	1.8	0
128	Risk of hospitalization and death within 2Âyears after methicillinâ€resistant Staphylococcus aureus (MRSA) diagnosis in persons colonized or infected with livestock and non–livestockâ€associated MRSA—A nationwide registerâ€based cohort study. Zoonoses and Public Health, 2020, 67, 814-822.	0.9	0
129	Possible misinterpretation of penicillin susceptibility in Staphylococcus aureus blood isolate due to in vitro loss of the blaZ gene. European Journal of Clinical Microbiology and Infectious Diseases, 2021, , 1.	1.3	0
130	Inhibitory Effect of Newly-Synthesized Chalcones on Hemolytic Activity of Methicillin-Resistant Staphylococcus aureus. Polish Journal of Microbiology, 2015, 64, 379-82.	0.6	0