Rajinder Paul Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3215722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of the proximal and distal gastric phases to the breakdown of cooked starch-rich solid foods during static in vitro gastric digestion. Food Research International, 2022, 157, 111270.	2.9	8
2	Influence of food macrostructure on the kinetics of acidification in the pig stomach after the consumption of rice- and wheat-based foods: Implications for starch hydrolysis and starch emptying rate. Food Chemistry, 2022, 394, 133410.	4.2	6
3	Structural breakdown of starchâ€based foods during gastric digestion and its link to glycemic response: <i>In vivo</i> and <i>in vitro</i> considerations. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2660-2698.	5.9	32
4	Tracking physical breakdown of rice- and wheat-based foods with varying structures during gastric digestion and its influence on gastric emptying in a growing pig model. Food and Function, 2021, 12, 4349-4372.	2.1	20
5	Egg white gel structure determines biochemical digestion with consequences on softening and mechanical disintegration during in vitro gastric digestion. Food Research International, 2020, 138, 109782.	2.9	10
6	Role of biochemical and mechanical disintegration on β-carotene release from steamed and fried sweet potatoes during in vitro gastric digestion. Food Research International, 2020, 136, 109481.	2.9	9
7	Buffering capacity of protein-based model food systems in the context of gastric digestion. Food and Function, 2019, 10, 6074-6087.	2.1	55
8	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	5.5	1,873
9	Gastric protein hydrolysis of raw and roasted almonds in the growing pig. Food Chemistry, 2016, 211, 502-508.	4.2	15
10	A Proposed Food Breakdown Classification System to Predict Food Behavior during Gastric Digestion. Journal of Food Science, 2015, 80, R924-34.	1.5	45
11	Acid Diffusion into Rice Boluses is Influenced by Rice Type, Variety, and Presence of αâ€Amylase. Journal of Food Science, 2015, 80, E316-25.	1.5	41
12	Rice bolus texture changes due to α-amylase. LWT - Food Science and Technology, 2014, 55, 27-33.	2.5	33
13	Physical Property Changes in Raw and Roasted Almonds during Gastric Digestion In vivo and In vitro. Food Biophysics, 2014, 9, 39-48.	1.4	27
14	On the kinematics and efficiency of advective mixing during gastric digestion – A numerical analysis. Journal of Biomechanics, 2014, 47, 3664-3673.	0.9	43
15	Gastric pH Distribution and Mixing of Soft and Rigid Food Particles in the Stomach using a Dual-Marker Technique. Food Biophysics, 2014, 9, 292-300.	1.4	59
16	Gastric Digestion In Vivo and In Vitro: How the Structural Aspects of Food Influence the Digestion Process. Annual Review of Food Science and Technology, 2014, 5, 111-132.	5.1	155
17	Particle Size Distribution of Brown and White Rice during Gastric Digestion Measured by Image Analysis. Journal of Food Science, 2013, 78, E1383-91.	1.5	45
18	Rheological Properties and Textural Attributes of Cooked Brown and White Rice During Gastric Digestion in Vivo. Food Biophysics, 2013, 8, 137-150.	1.4	42

RAJINDER PAUL SINGH

#	Article	IF	CITATIONS
19	Properties of Gastric Chyme from Pigs Fed Cooked Brown or White Rice. Food Biophysics, 2013, 8, 12-23.	1.4	30
20	Kinetics of in Vitro Bread Bolus Digestion with Varying Oral and Gastric Digestion Parameters. Food Biophysics, 2013, 8, 50-59.	1.4	77
21	Gastric emptying rate and chyme characteristics for cooked brown and white rice meals <i>in vivo</i> . Journal of the Science of Food and Agriculture, 2013, 93, 2900-2908.	1.7	66
22	Bolus Formation and Disintegration during Digestion of Food Carbohydrates. Comprehensive Reviews in Food Science and Food Safety, 2012, 11, 101-118.	5.9	112
23	Physical Changes in White and Brown Rice during Simulated Gastric Digestion. Journal of Food Science, 2011, 76, E450-7.	1.5	71
24	A Human Gastric Simulator (HGS) to Study Food Digestion in Human Stomach. Journal of Food Science, 2010, 75, E627-35.	1,5	313
25	Modes of Disintegration of Solid Foods in Simulated Gastric Environment. Food Biophysics, 2009, 4, 180-190.	1.4	101
26	Digestion of Raw and Roasted Almonds in Simulated Gastric Environment. Food Biophysics, 2009, 4, 365-377.	1.4	70
27	Internet-assisted Real-time Experiments Using the Internet-Hardware and Software Considerations. Journal of Food Science Education, 2005, 4, 10-14.	1.0	1
28	Kinetics of moisture uptake and solubleâ€solids loss by puffed breakfast cereals immersed in water. International Journal of Food Science and Technology, 1998, 33, 225-237.	1.3	72
29	Osmotic-Convective Dehydrofreezing Process for Drying Kiwifruit. Journal of Food Science, 1997, 62, 1039-1042.	1.5	83
30	Optical properties of corn oil during frying. International Journal of Food Science and Technology, 1996, 31, 353-358.	1.3	20
31	A Kinetic Approach to Food Quality Prediction Using Full-History Time-Temperature Indicators. Journal of Food Science, 1988, 53, 1866-1871.	1.5	47
32	Application of Time-Temperature Indicators in Monitoring Changes in Quality Attributes of Perishable and Semiperishable Foods. Journal of Food Science, 1988, 53, 148-152.	1.5	39
33	A Graphical Interpretation of Time-Temperature Related Quality Changes in Frozen Food. Journal of Food Science, 1987, 52, 435-439.	1.5	14
34	Thin-layer Drying of Parboiled Rice at Elevated Temperatures. Journal of Food Science, 1984, 49, 905-909.	1.5	13
35	MATHEMATICAL MODELING OF ROUGH RICE DRYING IN A SPOUTED BED. Journal of Food Process Engineering, 1980, 4, 19-52.	1.5	7
36	ENERGY ACCOUNTING IN CANNING TOMATO PRODUCTS. Journal of Food Science, 1980, 45, 735-739.	1.5	29

#	Article	IF	CITATIONS
37	KINETICS OF WATER DIFFUSION AND STARCH GELATINIZATION DURING RICE PARBOILING. Journal of Food Science, 1980, 45, 1387-1392.	1.5	154
38	CAUTION CARE IN CONVERTING UNITS. Journal of Food Science, 1977, 42, iv-iv.	1.5	0
39	Chemical Composition of Bovine Colostrum. , 0, , 405-411.		4
40	Emerging Food Technologies. , 0, , 621-643.		1
41	Carcass and Meat Quality Characteristics of Forage-Based Beef. , 0, , 12-21.		1
42	The Bio-Antioxidative Activity of Functional Factors in Bamboo Leaves. , 0, , 266-273.		1
43	"Efficient, Economic and Clean―Ethanol Production. , 0, , 68-75.		Ο
44	Application of Diphasic Dialysis Extraction in Ethyl Carbamate Analysis. , 0, , 86-92.		0
45	Platelet Aggregation Inhibitory Activity of Vinyldithiins and their Derivatives from Japanese DomesticAllium (A. victorlalis). , 0, , 114-124.		Ο
46	Cancer Preventive Phytochemicals from Tropical Zingiberaceae. , 0, , 125-133.		0
47	High Pressure Preserved Foods: Commercial Development Challenges. , 0, , 134-139.		Ο
48	Rheological Properties and Microstructure of Monodispersed O/W Emulsion Gel. , 0, , 149-154.		0
49	Study of Preserving Selenium in Several Vegetables Under Various Dehydrating Methods. , 0, , 155-162.		Ο
50	Rheology of Clarified Kiwifruit Juices. , 0, , 163-169.		0
51	Fermentation Technology for the Production of High-Value Food Additives. , 0, , 170-177.		1
52	Studies on Bioactive Compounds Production by Submerged Fermentation ofGanoderma lucidum. , 0, , 178-184.		0
53	Pigmental Improvement of Green Vegetables by Controlling Free Radicals During Heat Dehydration. , 0, , 185-191.		0
54	Application of Ultrasonication to Speed Up Process of Salted Duck Egg Production. , 0, , 192-197.		0

#	Article	IF	CITATIONS
55	Quantitative Aspect for Effect of Lipid Hydroperoxides on Fish Myofibrillar Protein. , 0, , 22-28.		О
56	Antioxidative Activity and Mechanism of Isolated Components from Flowers ofDelonix regza. , 0, , 242-252.		0
57	Multiple Antioxidants Protect Against Lipid Peroxidation and Diseases. , 0, , 274-280.		0
58	Nutritional Challenges and Opportunities for Improved Health in the Pacific Rim. , 0, , 281-283.		0
59	Hypocholesterolemic Effect of the Insoluble Fraction of Tofuru as a Dietetic Supplement. , 0, , 330-334.		0
60	An Efficient Production of DFA III and Its Potential Utility as a Physiologically Functional Food. , 0, , 353-362.		0
61	A Study of Proteins in Pidan (Chinese Eggs). , 0, , 371-377.		0
62	Isolation and Characterization of a Protease from Chinese Fish Sauce Material,Engraulis Japonicus. , 0, , 391-397.		0
63	Anti-Inflammatory Activity of Antelope Horn Keratin and its Tryptic Hydrolysate. , 0, , 398-404.		Ο
64	Development of a Water-Soluble Carboxymethyl-β-(1→3)-Glucan Derived fromSaccharomyces cerevisiae. , 0, , 412-419.		0
65	The Hemagglutinating and Cytotoxic Activities of Extracts from Mexican Legumes on Humon Tumor Cells. , 0, , 420-426.		Ο
66	Enzymatic Conversion of Cellulosic Materials in a Continuous Stirred Tank Reactor with an Ultrafiltration Membrane. , 0, , 433-445.		0
67	Viruses and Parasites in the U.S. Food and Water Supply. , 0, , 452-456.		1
68	Consumer Preference Groupsâ \in " Measurement, Implications, and Challenges. , 0, , 482-490.		0
69	Sensory Properties of Fruits and Vegetables. , 0, , 517-527.		Ο
70	Effect of Processing on Texture and Sensory Quality of Frozen Precooked Rice. , 0, , 528-539.		0
71	Transgenic Approach to Improve Protein, Starch and Taste Quality of Food Plants. , 0, , 560-563.		0
72	Effect of Microbial Transglutaminase Enzyme on Kamaboko Gel Formation and Cross-Linking Reaction of Myosin Heavy Chains. , 0, , 564-570.		0

#	Article	IF	CITATIONS
73	Characterization of Lipase and Its Application in Defatting of Fish. , 0, , 580-586.		0
74	Discussion on the Multifunctional Conversion of Dietary Fiber. , 0, , 46-51.		0
75	Flavor Ester Synthesis by Microbial Lipases in Non-Aqueous Phase. , 0, , 587-592.		0
76	Studies of the Fermentation Properties of the Lipid-Producing Microorganism—Mortierella isabelina M-018. , 0, , 593-599.		0
77	Culture ofDioscorea alata L. Var.purpurea M. Pouch. , 0, , 59-67.		0