Karin Schroen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3215647/publications.pdf

Version: 2024-02-01

36303 56724 9,721 232 51 83 citations g-index h-index papers 234 234 234 8131 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced coalescence stability of droplets through multi-faceted microgel adsorption behaviour. Journal of Food Engineering, 2022, 317, 110850.	5.2	2
2	Maillard reaction products as functional components in oil-in-water emulsions: A review highlighting interfacial and antioxidant properties. Trends in Food Science and Technology, 2022, 121, 129-141.	15.1	48
3	Food-grade microgel capsules tailored for anti-obesity strategies through microfluidic preparation. Current Opinion in Food Science, 2022, 45, 100816.	8.0	6
4	Alkyl chain length modulates antioxidant activity of gallic acid esters in spray-dried emulsions. Food Chemistry, 2022, 387, 132880.	8.2	13
5	Interfacial protein-protein displacement at fluid interfaces. Advances in Colloid and Interface Science, 2022, 305, 102691.	14.7	7
6	Dynamics of bubble formation in spontaneous microfluidic devices: Controlling dynamic adsorption via liquid phase properties. Journal of Colloid and Interface Science, 2022, 622, 218-227.	9.4	7
7	Chitin Nanocrystal Hydrophobicity Adjustment by Fatty Acid Esterification for Improved Polylactic Acid Nanocomposites. Polymers, 2022, 14, 2619.	4.5	10
8	A review of multistage membrane filtration approaches for enhanced efficiency during concentration and fractionation of milk and whey. International Journal of Dairy Technology, 2022, 75, 749-760.	2.8	12
9	Sequential adsorption and interfacial displacement in emulsions stabilized with plant-dairy protein blends. Journal of Colloid and Interface Science, 2021, 583, 704-713.	9.4	29
10	Glycation of soy proteins leads to a range of fractions with various supramolecular assemblies and surface activities. Food Chemistry, 2021, 343, 128556.	8.2	28
11	Lipid oxidation in Pickering emulsions. , 2021, , 275-293.		2
12	Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers, 2021, 161, 104849.	4.1	158
13	Electrode Surface Potential-Driven Protein Adsorption and Desorption through Modulation of Electrostatic, van der Waals, and Hydration Interactions. Langmuir, 2021, 37, 6549-6555.	3. 5	19
14	Antioxidant potential of non-modified and glycated soy proteins in the continuous phase of oil-in-water emulsions. Food Hydrocolloids, 2021, 114, 106564.	10.7	26
15	Coalescence dynamics in oil-in-water emulsions at elevated temperatures. Scientific Reports, 2021, 11, 10990.	3. 3	21
16	Whey Protein Isolate Microgel Properties Tuned by Crosslinking with Organic Acids to Achieve Stabilization of Pickering Emulsions. Foods, 2021, 10, 1296.	4.3	10
17	Conformational Changes of Whey and Pea Proteins upon Emulsification Approached by Front-Surface Fluorescence. Journal of Agricultural and Food Chemistry, 2021, 69, 6601-6612.	5 . 2	30
18	Thermoplastic bio-nanocomposites: From measurement of fundamental properties to practical application. Advances in Colloid and Interface Science, 2021, 292, 102419.	14.7	12

#	Article	IF	CITATIONS
19	Natural particles can armor emulsions against lipid oxidation and coalescence. Food Chemistry, 2021, 347, 129003.	8.2	17
20	Towards Oxidatively Stable Emulsions Containing Iron-Loaded Liposomes: The Key Role of Phospholipid-to-Iron Ratio. Foods, 2021, 10, 1293.	4.3	6
21	Droplet Microfluidics for Food and Nutrition Applications. Micromachines, 2021, 12, 863.	2.9	30
22	Physical and oxidative stability of food emulsions prepared with pea protein fractions. LWT - Food Science and Technology, 2021, 146, 111424.	5.2	41
23	A cascade microfiltration and reverse osmosis approach for energy efficient concentration of skim milk. Journal of Food Engineering, 2021, 300, 110511.	5.2	13
24	Quantification of energy input required for chitin nanocrystal aggregate size reduction through ultrasound. Scientific Reports, 2021, 11, 17217.	3.3	10
25	Early film formation in protein-stabilised emulsions: Insights from a microfluidic approach. Food Hydrocolloids, 2021, 118, 106785.	10.7	20
26	Mapping Bubble Formation and Coalescence in a Tubular Cross-Flow Membrane Foaming System. Membranes, 2021, 11, 710.	3.0	2
27	Electrochemically driven adsorptive separation techniques: From ions to proteins and cells in liquid streams. Separation and Purification Technology, 2021, 274, 118754.	7.9	6
28	Effects of dynamic adsorption on bubble formation and coalescence in partitioned-EDGE devices. Journal of Colloid and Interface Science, 2021, 602, 316-324.	9.4	16
29	Combining plant and dairy proteins in food colloid design. Current Opinion in Colloid and Interface Science, 2021, 56, 101507.	7.4	9
30	Polyphenol Loaded W1/O/W2 Emulsions Stabilized with Lesser Mealworm (Alphitobius diaperinus) Protein Concentrate Produced by Membrane Emulsification: Stability under Simulated Storage, Process, and Digestion Conditions. Foods, 2021, 10, 2997.	4.3	8
31	Microfluidic investigation of the coalescence susceptibility of pea protein-stabilised emulsions: Effect of protein oxidation level. Food Hydrocolloids, 2020, 102, 105610.	10.7	38
32	The Importance of Interfacial Tension in Emulsification: Connecting Scaling Relations Used in Large Scale Preparation with Microfluidic Measurement Methods. ChemEngineering, 2020, 4, 63.	2.4	29
33	Microfluidics Used as a Tool to Understand and Optimize Membrane Filtration Processes. Membranes, 2020, 10, 316.	3.0	14
34	Microtechnological Tools to Achieve Sustainable Food Processes, Products, and Ingredients. Food Engineering Reviews, 2020, 12, 101-120.	5.9	9
35	All-aqueous emulsions as miniaturized chemical reactors in the food and bioprocess technology. Current Opinion in Food Science, 2020, 33, 165-172.	8.0	10
36	Chemical Stability of αâ€Tocopherol in Colloidal Lipid Particles with Various Morphologies. European Journal of Lipid Science and Technology, 2020, 122, 2000012.	1.5	9

#	Article	IF	CITATIONS
37	Behavior of plant-dairy protein blends at air-water and oil-water interfaces. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111015.	5.0	52
38	Pickering particles as interfacial reservoirs of antioxidants. Journal of Colloid and Interface Science, 2020, 575, 489-498.	9.4	33
39	Synergistic stabilisation of emulsions by blends of dairy and soluble pea proteins: Contribution of the interfacial composition. Food Hydrocolloids, 2019, 97, 105206.	10.7	63
40	Effect of Ethanol and Temperature on Partition Coefficients of Ethyl Acetate, Isoamyl Acetate, and Isoamyl Alcohol: Instrumental and Predictive Investigation. Journal of Chemical & Engineering Data, 2019, 64, 3224-3230.	1.9	7
41	Batch stripping of flavour active compounds from beer: Effect of dry matter and ethanol on equilibrium and mass transfer in a packed column. Food and Bioproducts Processing, 2019, 118, 306-317.	3.6	2
42	Application of Microfluidics in the Production and Analysis of Food Foams. Foods, 2019, 8, 476.	4.3	22
43	Lipid Oxidation in Emulsions Fortified with Iron-Loaded Alginate Beads. Foods, 2019, 8, 361.	4.3	11
44	Monodisperse droplet formation by spontaneous and interaction based mechanisms in partitioned EDGE microfluidic device. Scientific Reports, 2019, 9, 7820.	3.3	30
45	Towards new food emulsions: designing the interface and beyond. Current Opinion in Food Science, 2019, 27, 74-81.	8.0	57
46	Conformational changes influence clogging behavior of micrometer-sized microgels in idealized multiple constrictions. Scientific Reports, 2019, 9, 9241.	3.3	8
47	Can we prevent lipid oxidation in emulsions by using fat-based Pickering particles?. Food Research International, 2019, 120, 352-363.	6.2	42
48	Dynamic heterogeneity in complex interfaces of soft interface-dominated materials. Scientific Reports, 2019, 9, 2938.	3.3	50
49	Microfluidic model systems used to emulate processes occurring during soft particle filtration. Scientific Reports, 2019, 9, 3063.	3.3	10
50	Simultaneous Silicon Oxide Growth and Electrophoretic Deposition of Graphene Oxide. Langmuir, 2019, 35, 3717-3723.	3.5	8
51	Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trends in Food Science and Technology, 2019, 86, 426-438.	15.1	70
52	Oxidative stability of emulsions fortified with iron: the role of liposomal phospholipids. Journal of the Science of Food and Agriculture, 2019, 99, 2957-2965.	3.5	20
53	Encapsulation of lipids as emulsion-alginate beads reduces food intake: a randomized placebo-controlled cross-over human trial in overweight adults. Nutrition Research, 2019, 63, 86-94.	2.9	12
54	Synergistic and antagonistic effects of plant and dairy protein blends on the physicochemical stability of lycopene-loaded emulsions. Food Hydrocolloids, 2018, 81, 180-190.	10.7	33

#	Article	IF	CITATIONS
55	Coalescence stability of Pickering emulsions produced with lipid particles: A microfluidic study. Journal of Food Engineering, 2018, 234, 63-72.	5.2	92
56	From cooperative to uncorrelated clogging in cross-flow microfluidic membranes. Scientific Reports, 2018, 8, 5687.	3.3	34
57	Tayloring W/O/W emulsion composition for effective encapsulation: The role of PGPR in water transfer-induced swelling. Food Research International, 2018, 106, 722-728.	6.2	40
58	Exergy analysis of membrane capacitive deionization (MCDI). Desalination, 2018, 444, 162-168.	8.2	16
59	Formation, Structure, and Functionality of Interfacial Layers in Food Emulsions. Annual Review of Food Science and Technology, 2018, 9, 551-587.	9.9	160
60	From highly specialised to generally available modelling of shear induced particle migration for flow segregation based separation technology. Separation and Purification Technology, 2018, 192, 99-109.	7.9	9
61	Dynamic fluid interface formation in microfluidics: Effect of emulsifier structure and oil viscosity. Innovative Food Science and Emerging Technologies, 2018, 45, 215-219.	5.6	5
62	Zwitterionic Polymer Modified Porous Carbon for High-Performance and Antifouling Capacitive Desalination. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33564-33573.	8.0	27
63	Flavor Retention and Release from Beverages: A Kinetic and Thermodynamic Perspective. Journal of Agricultural and Food Chemistry, 2018, 66, 9869-9881.	5. 2	69
64	Compressive resistance of granular-scale microgels: From loose to dense packing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 406-416.	4.7	13
65	Modelling Shear Induced Diffusion Based Particle Segregation: A Basis for Novel Separation Technology. Applied Sciences (Switzerland), 2018, 8, 1008.	2.5	4
66	Emulsion encapsulation in calcium-alginate beads delays lipolysis during dynamic in vitro digestion. Journal of Functional Foods, 2018, 46, 394-402.	3.4	27
67	The effect of dissolved gas on coalescence of oil drops studied with microfluidics. Journal of Colloid and Interface Science, 2018, 528, 166-173.	9.4	22
68	Food-grade micro-encapsulation systems that may induce satiety via delayed lipolysis: A review. Critical Reviews in Food Science and Nutrition, 2017, 57, 2218-2244.	10.3	64
69	Legume Protein Isolates for Stable Acidic Emulsions Prepared by Premix Membrane Emulsification. Food Biophysics, 2017, 12, 119-128.	3.0	20
70	Interfacial behaviour of biopolymer multilayers: Influence of in vitro digestive conditions. Colloids and Surfaces B: Biointerfaces, 2017, 153, 199-207.	5.0	28
71	Emulsion-alginate beads designed to control in vitro intestinal lipolysis: Towards appetite control. Journal of Functional Foods, 2017, 34, 319-328.	3.4	70
72	Coalescence of protein-stabilised emulsions studied with microfluidics. Food Hydrocolloids, 2017, 70, 96-104.	10.7	52

#	Article	IF	CITATIONS
73	Tailored microstructure of colloidal lipid particles for Pickering emulsions with tunable properties. Soft Matter, 2017, 13, 3190-3198.	2.7	46
74	Physicochemical stability of lycopene-loaded emulsions stabilized by plant or dairy proteins. Food Structure, 2017, 12, 34-42.	4.5	62
75	Emulsification in novel ultrasonic cavitation intensifying bag reactors. Ultrasonics Sonochemistry, 2017, 36, 446-453.	8.2	37
76	Encapsulation of the therapeutic microbe Akkermansia muciniphila in a double emulsion enhances survival in simulated gastric conditions. Food Research International, 2017, 102, 372-379.	6.2	56
77	Deswelling and deformation of microgels in concentrated packings. Scientific Reports, 2017, 7, 10223.	3.3	66
78	Particle migration in laminar shear fields: A new basis for large scale separation technology?. Separation and Purification Technology, 2017, 174, 372-388.	7.9	25
79	Destabilization of multilayered interfaces in digestive conditions limits their ability to prevent lipolysis in emulsions. Food Structure, 2017, 12, 54-63.	4.5	36
80	A comparison of microfiltration and inertia-based microfluidics for large scale suspension separation. Separation and Purification Technology, 2017, 173, 86-92.	7.9	38
81	Apparent Interfacial Tension Effects in Protein Stabilized Emulsions Prepared with Microstructured Systems. Membranes, 2017, 7, 19.	3.0	16
82	Food-grade double emulsions as effective fat replacers in meat systems. Journal of Food Engineering, 2017, 213, 54-59.	5.2	51
83	Membranes for Enhanced Emulsification Processes. , 2016, , 429-453.		2
84	Linking Findings in Microfluidics to Membrane Emulsification Process Design: The Importance of Wettability and Component Interactions with Interfaces. Membranes, 2016, 6, 26.	3.0	21
85	Preparation of polylactide microcapsules at a high throughput with a packedâ€bed premix emulsification system. Journal of Applied Polymer Science, 2016, 133, .	2.6	7
86	Transition-state theory predicts clogging at the microscale. Scientific Reports, 2016, 6, 28450.	3.3	34
87	Discontinuous nature of the repulsive-to-attractive colloidal glass transition. Scientific Reports, 2016, 6, 22725.	3.3	18
88	Microfluidic EDGE emulsification: the importance of interface interactions on droplet formation and pressure stability. Scientific Reports, 2016, 6, 26407.	3.3	36
89	Protein and lipid oxidation affect the viscoelasticity of whey protein layers at the oil–water interface. European Journal of Lipid Science and Technology, 2016, 118, 1630-1643.	1.5	49
90	Convective mass transport dominates surfactant adsorption in a microfluidic Y-junction. Soft Matter, 2016, 12, 9025-9029.	2.7	17

#	Article	IF	CITATIONS
91	Food Engineering at Multiple Scales: Case Studies, Challenges and the Future—A European Perspective. Food Engineering Reviews, 2016, 8, 91-115.	5.9	52
92	Cross-flow microfluidic emulsification from a food perspective. Trends in Food Science and Technology, 2016, 49, 51-63.	15.1	41
93	Preparation of stable food-grade double emulsions with a hybrid premix membrane emulsification system. Food Chemistry, 2016, 206, 59-66.	8.2	43
94	Interfacial tension measured at high expansion rates and within milliseconds using microfluidics. Journal of Colloid and Interface Science, 2016, 470, 71-79.	9.4	34
95	Emulsification: Established and Future Technologies. Particle Technology Series, 2016, , 257-289.	0.5	3
96	Spruce galactoglucomannans in rapeseed oil-in-water emulsions: Efficient stabilization performance and structural partitioning. Food Hydrocolloids, 2016, 52, 615-624.	10.7	42
97	Micro- and Nanoengineering: Relevance in Food Processing. , 2016, , .		0
98	Fermentation broth components influence droplet coalescence and hinder advanced biofuel recovery during fermentation. Biotechnology Journal, 2015, 10, 1206-1215.	3.5	21
99	Cooperativity and segregation in confined flows of soft binary glasses. Physical Review E, 2015, 92, 022308.	2.1	9
100	<i>Listeria monocytogenes</i> repellence by enzymatically modified <scp>PES</scp> surfaces. Journal of Applied Polymer Science, 2015, 132, .	2.6	8
101	How microfluidic methods can lead to better emulsion products. Lipid Technology, 2015, 27, 234-236.	0.3	5
102	A novel ultrasonic cavitation enhancer. Journal of Physics: Conference Series, 2015, 656, 012112.	0.4	4
103	Microfluidic emulsification devices: from micrometer insights to large-scale food emulsion production. Current Opinion in Food Science, 2015, 3, 33-40.	8.0	64
104	Foam preparation at high-throughput using a novel packed bed system. Food and Bioproducts Processing, 2015, 94, 561-564.	3.6	6
105	Pickering Emulsions for Food Applications: Background, Trends, and Challenges. Annual Review of Food Science and Technology, 2015, 6, 263-297.	9.9	524
106	Manipulating and quantifying temperature-triggered coalescence with microcentrifugation. Lab on A Chip, 2015, 15, 188-194.	6.0	21
107	Partitioned EDGE devices for high throughput production of monodisperse emulsion droplets with two distinct sizes. Lab on A Chip, 2015, 15, 2486-2495.	6.0	45
108	Microfluidic emulsification in food processing. Journal of Food Engineering, 2015, 147, 1-7.	5.2	52

#	Article	IF	CITATIONS
109	Anti-browning and barrier properties of edible coatings prepared with electrospraying. Innovative Food Science and Emerging Technologies, 2014, 25, 9-13.	5 . 6	42
110	Barrier properties and storage stability of edible coatings prepared with electrospraying. Innovative Food Science and Emerging Technologies, 2014, 23, 182-187.	5.6	16
111	Use of dynamic membranes for the preparation of vitamin E-loaded lipid particles: An alternative to prevent fouling observed in classical cross-flow emulsification. Chemical Engineering Journal, 2014, 236, 498-505.	12.7	16
112	Characterisation and use of \hat{l}^2 -lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof. Journal of Food Engineering, 2014, 143, 53-61.	5. 2	98
113	Ambient Surface Analysis of Organic Monolayers using Direct Analysis in Real Time Orbitrap Mass Spectrometry. Analytical Chemistry, 2014, 86, 2403-2411.	6.5	28
114	High throughput production of double emulsions using packed bed premix emulsification. Food Research International, 2014, 66, 78-85.	6.2	21
115	Influence of the emulsion formulation in premix emulsification using packed beds. Chemical Engineering Science, 2014, 116, 547-557.	3.8	18
116	Emulsion Preparation with Microstructured Systems. , 2014, , 1-12.		2
117	Electrospraying of water in oil emulsions for thin film coating. Journal of Food Engineering, 2013, 119, 776-780.	5.2	28
118	Fouling mechanisms of dairy streams during membrane distillation. Journal of Membrane Science, 2013, 441, 102-111.	8.2	62
119	Deposition of Thin Lipid Films Prepared by Electrospraying. Food and Bioprocess Technology, 2013, 6, 3047-3055.	4.7	16
120	Particle migration leads to deposition-free fractionation. Journal of Membrane Science, 2013, 440, 58-66.	8.2	12
121	Effect of surface wettability on microfluidic EDGE emulsification. Journal of Colloid and Interface Science, 2013, 403, 157-159.	9.4	9
122	Droplet break-up mechanism in premix emulsification using packed beds. Chemical Engineering Science, 2013, 92, 190-197.	3.8	35
123	Coalescence kinetics of oil-in-water emulsions studied with microfluidics. Fuel, 2013, 106, 327-334.	6.4	46
124	Flow-induced particle migration in microchannels for improved microfiltration processes. Microfluidics and Nanofluidics, 2013, 15, 451-465.	2.2	22
125	Preparation of monodispersed oil-in-water emulsions through semi-metal microfluidic EDGE systems. Microfluidics and Nanofluidics, 2013, 14, 775-784.	2.2	10
126	Coalescence and compression in centrifuged emulsions studied with in situ optical microscopy. Soft Matter, 2013, 9, 4026.	2.7	39

#	Article	IF	Citations
127	Monodispersed water-in-oil emulsions prepared with semi-metal microfluidic EDGE systems. Microfluidics and Nanofluidics, 2013, 14, 187-196.	2.2	15
128	Separation process for very concentrated emulsions and suspensions in the food industry. Innovative Food Science and Emerging Technologies, 2013, 18, 177-182.	5.6	16
129	The effect of pore geometry on premix membrane emulsification using nickel sieves having uniform pores. Chemical Engineering Science, 2013, 93, 173-180.	3.8	25
130	Fouling of dairy components on hydrophobic polytetrafluoroethylene (PTFE) membranes for membrane distillation. Journal of Membrane Science, 2013, 442, 149-159.	8.2	93
131	Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions. Journal of Colloid and Interface Science, 2013, 389, 147-156.	9.4	33
132	Coalescence dynamics of surfactant-stabilized emulsions studied with microfluidics. Soft Matter, 2012, 8, 10650.	2.7	79
133	A microfluidic method to study demulsification kinetics. Lab on A Chip, 2012, 12, 1060.	6.0	56
134	A Multi-Platform Flow Device for Microbial (Co-) Cultivation and Microscopic Analysis. PLoS ONE, 2012, 7, e36982.	2.5	38
135	Enzymatic Modification of Polyethersulfone Membranes. Water (Switzerland), 2012, 4, 932-943.	2.7	9
136	Separation kinetics of an oil-in-water emulsion under enhanced gravity. Chemical Engineering Science, 2012, 71, 118-125.	3.8	104
137	Suspension flow in microfluidic devices — A review of experimental techniques focussing on concentration and velocity gradients. Advances in Colloid and Interface Science, 2012, 173, 23-34.	14.7	31
138	Microcapsule production by an hybrid colloidosome-layer-by-layer technique. Food Hydrocolloids, 2012, 27, 119-125.	10.7	45
139	Enzyme-catalyzed modification of PES surfaces: Reduction in adsorption of BSA, dextrin and tannin. Journal of Colloid and Interface Science, 2012, 378, 191-200.	9.4	20
140	Laccase-catalyzed modification of PES membranes with 4-hydroxybenzoic acid and gallic acid. Journal of Membrane Science, 2012, 394-395, 69-79.	8.2	17
141	The potential of electrospraying for hydrophobic film coating on foods. Journal of Food Engineering, 2012, 108, 410-416.	5 . 2	53
142	Electrostatic powder coating of foods – State of the art and opportunities. Journal of Food Engineering, 2012, 111, 1-5.	5.2	37
143	Mild and Highly Flexible Enzyme-Catalyzed Modification of Poly(ethersulfone) Membranes. ACS Applied Materials & Samp; Interfaces, 2011, 3, 801-810.	8.0	29
144	Protein-Repellent Silicon Nitride Surfaces: UV-Induced Formation of Oligoethylene Oxide Monolayers. ACS Applied Materials & Samp; Interfaces, 2011, 3, 697-704.	8.0	33

#	Article	IF	CITATIONS
145	Analysis of mixed motion in deterministic ratchets via experiment and particle simulation. Microfluidics and Nanofluidics, 2011, 10, 843-853.	2.2	48
146	High-throughput premix membrane emulsification using nickel sieves having straight-through pores. Journal of Membrane Science, 2011, 383, 116-123.	8.2	41
147	Spontaneous droplet formation techniques for monodisperse emulsions preparation – Perspectives for food applications. Journal of Food Engineering, 2011, 107, 334-346.	5.2	62
148	High-flux membrane separation using fluid skimming dominated convective fluid flow. Journal of Membrane Science, 2011, 371, 20-27.	8.2	24
149	Biodegradable polymeric microcapsules: Preparation and properties. Chemical Engineering Journal, 2011, 169, 1-10.	12.7	56
150	Modification methods for poly(arylsulfone) membranes: A mini-review focusing on surface modification. Desalination, 2011, 275, 1-9.	8.2	243
151	Mixed motion in deterministic ratchets due to anisotropic permeability. Journal of Colloid and Interface Science, 2011, 354, 7-14.	9.4	41
152	Simultaneous formation of many droplets in a single microfluidic droplet formation unit. AICHE Journal, 2010, 56, 833-836.	3.6	20
153	Biorepellent Organic Coatings for Improved Microsieve Filtration. ACS Symposium Series, 2010, , 151-163.	0.5	1
154	Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification. Microfluidics and Nanofluidics, 2010, 9, 77-85.	2.2	92
155	Microfluidic Yâ€junctions: A robust emulsification system with regard to junction design. AICHE Journal, 2010, 56, 1946-1949.	3.6	7
156	A descriptive forceâ€balance model for droplet formation at microfluidic Yâ€junctions. AICHE Journal, 2010, 56, 2641-2649.	3.6	16
157	EDGE emulsification for food-grade dispersions. Journal of Food Engineering, 2010, 97, 348-354.	5.2	52
158	Premix emulsification: A review. Journal of Membrane Science, 2010, 362, 1-11.	8.2	157
159	In situ quantification of membrane foulant accumulation by reflectometry. Journal of Membrane Science, 2010, 362, 453-459.	8.2	9
160	Addition of oils to polylactide casting solutions as a tool to tune film morphology and mechanical properties. Polymer Engineering and Science, 2010, 50, 513-519.	3.1	15
161	Mechanical Characterization and pH Response of Fibril-Reinforced Microcapsules Prepared by Layer-by-Layer Adsorption. Langmuir, 2010, 26, 19106-19113.	3.5	50
162	Controlled Oxidation, Biofunctionalization, and Patterning of Alkyl Monolayers on Silicon and Silicon Nitride Surfaces using Plasma Treatment. Langmuir, 2010, 26, 866-872.	3.5	24

#	Article	IF	Citations
163	The mechanism of droplet formation in microfluidic EDGE systems. Soft Matter, 2010, 6, 321-330.	2.7	52
164	Covalently Attached Organic Monolayers on SiC and Si _{<i>x</i>} N ₄ Surfaces: Formation Using UV Light at Room Temperature. Langmuir, 2009, 25, 2172-2180.	3. 5	99
165	Oil-filled polymer microcapsules for ultrasound-mediated delivery of lipophilic drugs. Journal of Controlled Release, 2009, 133, 109-118.	9.9	109
166	Hollow polylactide microcapsules with controlled morphology and thermal and mechanical properties. AICHE Journal, 2009, 55, 2827-2834.	3.6	6
167	The microheater: A new tool for rapid determination of food kinetics. Journal of Food Engineering, 2009, 91, 78-84.	5. 2	6
168	Lattice Boltzmann simulations of droplet formation during microchannel emulsification. Journal of Colloid and Interface Science, 2009, 335, 112-122.	9.4	24
169	Deterministic Ratchets for Particle Separation Fabricated With Si MEMS Technology. Procedia Chemistry, 2009, 1, 345-348.	0.7	1
170	Generalised insights in droplet formation at T-junctions through statistical analysis. Chemical Engineering Science, 2009, 64, 3042-3050.	3.8	52
171	Colloidosomes: Versatile microcapsules in perspective. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 343, 43-49.	4.7	94
172	Membrane applications for antibiotics production. Desalination, 2009, 236, 78-84.	8.2	5
173	A Geometric Model for the Dynamics of Microchannel Emulsification. Langmuir, 2009, 25, 7320-7327.	3.5	23
174	Dynamic Interfacial Tension Measurements with Microfluidic Y-Junctions. Langmuir, 2009, 25, 9751-9758.	3.5	80
175	Characterization of Emulsification at Flat Microchannel Y Junctions. Langmuir, 2009, 25, 3396-3401.	3 . 5	89
176	Parallelized edge-based droplet generation (EDGE) devices. Lab on A Chip, 2009, 9, 2824.	6.0	78
177	Mechanical properties and porosity of polylactide for biomedical applications. Journal of Applied Polymer Science, 2008, 107, 82-93.	2.6	34
178	Premix membrane emulsification by using a packed layer of glass beads. AICHE Journal, 2008, 54, 2190-2197.	3.6	33
179	Polylactide microspheres prepared by premix membrane emulsification—Effects of solvent removal rate. Journal of Membrane Science, 2008, 310, 484-493.	8.2	42
180	Preparation of hollow polylactide microcapsules through premix membrane emulsification—Effects of nonsolvent properties. Journal of Membrane Science, 2008, 325, 665-671.	8.2	40

#	Article	IF	Citations
181	Classification and evaluation of microfluidic devices for continuous suspension fractionation. Advances in Colloid and Interface Science, 2008, 142, 53-66.	14.7	66
182	Morus alba L. nature's functional tonic. Trends in Food Science and Technology, 2008, 19, 505-512.	15.1	181
183	Covalent Attachment of Organic Monolayers to Silicon Carbide Surfaces. Langmuir, 2008, 24, 4007-4012.	3.5	104
184	Polymer Microcapsules with a Fiber-Reinforced Nanocomposite Shell. Langmuir, 2008, 24, 1608-1612.	3.5	65
185	Microchannel Emulsification: From Computational Fluid Dynamics to Predictive Analytical Model. Langmuir, 2008, 24, 10107-10115.	3.5	57
186	Oil-filled polymeric ultrasound contrast agent as local drug delivery system for lipophilic drugs., 2008,,.		0
187	Covalent Biofunctionalization of Silicon Nitride Surfaces. Langmuir, 2007, 23, 6233-6244.	3.5	77
188	Polylactide films formed by immersion precipitation: Effects of additives, nonsolvent, and temperature. Journal of Applied Polymer Science, 2007, 104, 959-971.	2.6	23
189	Transmission and fractionation of micro-sized particle suspensions. Journal of Membrane Science, 2007, 290, 230-240.	8.2	26
190	Differential analysis of deposition layers from micellar casein and milk fat globule suspensions onto ultrafiltration and microfiltration membranes. Journal of Food Engineering, 2007, 80, 257-266.	5.2	14
191	Biocatalysts: Measurement, modelling and design of heterogeneity. Biotechnology Advances, 2007, 25, 137-147.	11.7	18
192	Lattice Boltzmann Simulations of Droplet Formation in a T-Shaped Microchannel. Langmuir, 2006, 22, 4144-4152.	3.5	308
193	Visualization of droplet break-up in pre-mix membrane emulsification using microfluidic devices. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277, 223-229.	4.7	63
194	Evaluation of microsieve membrane design. Journal of Membrane Science, 2006, 278, 344-348.	8.2	38
195	Optimization of the membrane and pore design for micro-machined membranes. Journal of Membrane Science, 2006, 278, 239-250.	8.2	29
196	A multicomponent reaction–diffusion model of a heterogeneously distributed immobilized enzyme. Applied Microbiology and Biotechnology, 2006, 72, 263-278.	3.6	21
197	Effects of particle size segregation on crossflow microfiltration performance: Control mechanism for concentration polarisation and particle fractionation. Journal of Membrane Science, 2006, 268, 189-197.	8.2	52
198	Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention. Journal of Membrane Science, 2005, 247, 11-20.	8.2	168

#	Article	IF	CITATIONS
199	Preparation of double emulsions by membrane emulsification?a review. Journal of Membrane Science, 2005, 251, 7-15.	8.2	254
200	Droplet formation in a T-shaped microchannel junction: A model system for membrane emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 266, 106-116.	4.7	132
201	Novel approach to quantify immobilized-enzyme distributions. Biotechnology and Bioengineering, 2005, 89, 660-669.	3.3	14
202	Enzyme distribution and matrix characteristics in biocatalytic particles. Journal of Biotechnology, 2005, 119, 400-415.	3.8	6
203	Field-emission scanning electron microscopy analysis of morphology and enzyme distribution within an industrial biocatalytic particle. Scanning, 2005, 27, 181-189.	1.5	4
204	The life and death of sponge cells. Biotechnology and Bioengineering, 2004, 85, 239-247.	3.3	20
205	Influence of dynamic interfacial tension on droplet formation during membrane emulsification. Journal of Colloid and Interface Science, 2004, 277, 456-463.	9.4	111
206	Membrane fractionation of milk: state of the art and challenges. Journal of Membrane Science, 2004, 243, 263-272.	8.2	351
207	Tailor-Made Functionalization of Silicon Nitride Surfaces. Journal of the American Chemical Society, 2004, 126, 8600-8601.	13.7	74
208	Substrate sorption into the polymer matrix of Novozym 435 \hat{A}^{\odot} and its effect on the enantiomeric ratio determination. Tetrahedron: Asymmetry, 2003, 14, 2699-2704.	1.8	30
209	Enzyme Distribution Derived from Macroscopic Particle Behavior of an Industrial Immobilized Penicillin-G Acylase. Biotechnology Progress, 2003, 19, 1510-1518.	2.6	27
210	Enhancement of Enzymatic Adipyl-7-ADCA Hydrolysis. Biocatalysis and Biotransformation, 2002, 20, 369-375.	2.0	1
211	Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water two-phase system. Journal of Biotechnology, 2002, 96, 281-289.	3.8	30
212	Advantages of using non-isothermal bioreactors for the enzymatic synthesis of antibiotics: The penicillin G acylase as enzyme model. Biotechnology and Bioengineering, 2002, 79, 334-346.	3.3	24
213	Integrated reactor concepts for the enzymatic kinetic synthesis of cephalexin. Biotechnology and Bioengineering, 2002, 80, 144-155.	3.3	33
214	Modelling of the enzymatic kinetically controlled synthesis of cephalexin:Influence of diffusion limitation. Biotechnology and Bioengineering, 2002, 80, 331-340.	3.3	33
215	Assessment of intraparticle biocatalytic distributions as a tool in rational formulation. Current Opinion in Biotechnology, 2002, 13, 398-405.	6.6	26
216	In situ product removal during enzymatic cephalexin synthesis by complexation. Enzyme and Microbial Technology, 2002, 31, 264-273.	3.2	23

#	Article	IF	Citations
217	Process Design for Enzymatic Adipyl-7-ADCA Hydrolysis. Biotechnology Progress, 2002, 18, 745-751.	2.6	9
218	Shear-induced diffusion model for microfiltration of polydisperse suspensions. Desalination, 2002, 146, 63-68.	8.2	38
219	Complexants for the clathration mediated synthesis of the antibiotic cephradine. Green Chemistry, 2001, 3, 189-192.	9.0	4
220	Modeling of the enzymatic kinetic synthesis of cephalexin-Influence of substrate concentration and temperature. Biotechnology and Bioengineering, 2001, 73, 171-178.	3.3	52
221	Cephalexin synthesis by immobilised penicillin G acylase under non-isothermal conditions: reduction of diffusion limitation. Journal of Molecular Catalysis B: Enzymatic, 2001, 15, 163-172.	1.8	30
222	Equilibrium position, kinetics, and reactor concepts for the adipyl-7-ADCA-hydrolysis process. Biotechnology and Bioengineering, 2000, 70, 654-661.	3.3	21
223	Non-isothermal cephalexin hydrolysis by penicillin G acylase immobilized on grafted nylon membranes. Journal of Molecular Catalysis B: Enzymatic, 2000, 8, 221-232.	1.8	29
224	Immobilization of penicillin G acylase onto chemically grafted nylon particles. Journal of Molecular Catalysis B: Enzymatic, 2000, 10, 445-451.	1.8	52
225	Thermodynamically controlled synthesis of \hat{l}^2 -lactam antibiotics. Equilibrium concentrations and side-chain properties. Enzyme and Microbial Technology, 1999, 24, 498-506.	3.2	62
226	Thermodynamically Controlled Synthesis Of Cefamandole. Biocatalysis and Biotransformation, 1999, 17, 209-223.	2.0	25
227	Membrane Separation for Downstream Processing of Aqueous-Organic Bioconversions. Biotechnology Progress, 1997, 13, 276-283.	2.6	20
228	Title is missing!. Biotechnology Letters, 1997, 11, 899-903.	0.5	6
229	Influence of Preadsorbed Block Copolymers on Protein Adsorption: Surface Properties, Layer Thickness, and Surface Coverage. Langmuir, 1995, 11, 3068-3074.	3.5	118
230	Wettability of tri-block copolymer coated hydrophobic surfaces Predictions and measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 90, 235-249.	4.7	7
231	Membrane modification to avoid wettability changes due to protein adsorption in an emulsion/membrane bioreactor. Journal of Membrane Science, 1993, 80, 265-274.	8.2	28
232	Surfactant-induced wetting transitions: Role of surface hydrophobicity and effect on oil permeability of ultrafiltration membranes. Colloids and Surfaces, 1990, 51, 189-205.	0.9	30