Frederik Naujoks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3215339/publications.pdf

Version: 2024-02-01

56 papers 1,476 citations

257450 24 h-index 35 g-index

58 all docs 58 docs citations

58 times ranked 782 citing authors

#	Article	IF	Citations
1	Context and Culture affect the Psychometrics of Questionnaires evaluating Speech-based Assistants. , 2021, , .		1
2	The box task - a method for assessing in-vehicle system demand. MethodsX, 2021, 8, 101261.	1.6	5
3	How Many Participants Are Required for Validation of Automated Vehicle Interfaces in User Studies?. Information (Switzerland), 2021, 12, 410.	2.9	1
4	Empirical Validation of a Checklist for Heuristic Evaluation of Automated Vehicle HMIs. Advances in Intelligent Systems and Computing, 2020, , 3-14.	0.6	4
5	Self-report measures for the assessment of human–machine interfaces in automated driving. Cognition, Technology and Work, 2020, 22, 703-720.	3.0	15
6	Effects of secondary tasks and display position on glance behavior during partially automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 68, 23-32.	3.7	20
7	What and how to tell beforehand: The effect of user education on understanding, interaction and satisfaction with driving automation. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 68, 316-335.	3.7	25
8	Methodological Approach towards Evaluating the Effects of Non-Driving Related Tasks during Partially Automated Driving. Information (Switzerland), 2020, 11, 340.	2.9	4
9	Editorial for Special Issue: Test and Evaluation Methods for Human-Machine Interfaces of Automated Vehicles. Information (Switzerland), 2020, 11, 403.	2.9	2
10	Standardized Test Procedure for External Human–Machine Interfaces of Automated Vehicles. Information (Switzerland), 2020, 11, 173.	2.9	28
11	Checklist for Expert Evaluation of HMIs of Automated Vehicles—Discussions on Its Value and Adaptions of the Method within an Expert Workshop. Information (Switzerland), 2020, 11, 233.	2.9	13
12	Measuring driver distraction $\hat{a}\in$ Evaluation of the box task method as a tool for assessing in-vehicle system demand. Applied Ergonomics, 2020, 88, 103181.	3.1	14
13	Engagement in Non-Driving Related Tasks as a Non-Intrusive Measure for Mode Awareness: A Simulator Study. Information (Switzerland), 2020, 11, 239.	2.9	11
14	Usability Evaluation—Advances in Experimental Design in the Context of Automated Driving Human–Machine Interfaces. Information (Switzerland), 2020, 11, 240.	2.9	10
15	Using European naturalistic driving data to assess secondary task engagement when stopped at a red light. Journal of Safety Research, 2020, 73, 235-243.	3.6	3
16	Human–Vehicle Integration in the Code of Practice for Automated Driving. Information (Switzerland), 2020, 11, 284.	2.9	4
17	A Methodological Approach to Determine the Benefits of External HMI During Interactions Between Cyclists and Automated Vehicles: A Bicycle Simulator Study. Lecture Notes in Computer Science, 2020, , 211-227.	1.3	9
18	How Important is the Plausibility of Test Scenarios Within Usability Studies for AV HMI?. Advances in Intelligent Systems and Computing, 2020, , 77-84.	0.6	0

#	Article	IF	Citations
19	Test procedure for evaluating the human–machine interface of vehicles with automated driving systems. Traffic Injury Prevention, 2019, 20, S146-S151.	1.4	26
20	Towards guidelines and verification methods for automated vehicle HMIs. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 60, 121-136.	3.7	57
21	Noncritical State Transitions During Conditionally Automated Driving on German Freeways: Effects of Non–Driving Related Tasks on Takeover Time and Takeover Quality. Human Factors, 2019, 61, 596-613.	3.5	60
22	Tell Them How They Did: Feedback on Operator Performance Helps Calibrate Perceived Ease of Use in Automated Driving. Multimodal Technologies and Interaction, 2019, 3, 29.	2.5	6
23	User Education in Automated Driving: Owner's Manual and Interactive Tutorial Support Mental Model Formation and Human-Automation Interaction. Information (Switzerland), 2019, 10, 143.	2.9	48
24	Learning to use automation: Behavioral changes in interaction with automated driving systems. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 62, 599-614.	3.7	45
25	The impact of an in-vehicle display on glance distribution in partially automated driving in an on-road experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 52, 40-50.	3.7	29
26	Effect of different alcohol levels on take-over performance in conditionally automated driving. Accident Analysis and Prevention, 2018, 115, 89-97.	5.7	49
27	A Review of Non-driving-related Tasks Used in Studies on Automated Driving. Advances in Intelligent Systems and Computing, 2018, , 525-537.	0.6	47
28	Testing Scenarios for Human Factors Research in Level 3 Automated Vehicles. Advances in Intelligent Systems and Computing, 2018, , 551-559.	0.6	23
29	Understanding and Applying the Concept of "Driver Availability―in Automated Driving. Advances in Intelligent Systems and Computing, 2018, , 595-605.	0.6	27
30	Unskilled and Unaware. , 2018, , .		3
31	How Usability Can Save the Day - Methodological Considerations for Making Automated Driving a Success Story. , 2018, , .		21
32	Use Cases for Assessing, Testing, and Validating the Human Machine Interface of Automated Driving Systems. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 1873-1877.	0.3	20
33	From partial and high automation to manual driving: Relationship between non-driving related tasks, drowsiness and take-over performance. Accident Analysis and Prevention, 2018, 121, 28-42.	5.7	91
34	Expert-based controllability assessment of control transitions from automated to manual driving. MethodsX, 2018, 5, 579-592.	1.6	33
35	"What Makes a Cooperative Driver?―Identifying parameters of implicit and explicit forms of communication in a lane change scenario. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 58, 1031-1042.	3.7	25
36	The perceived criticality of different time headways is depending on velocity. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 58, 1043-1052.	3.7	9

#	Article	IF	CITATIONS
37	Learning the "Language―of Road Users - How Shall a Self-driving Car Convey Its Intention to Cooperate to Other Human Drivers?. Advances in Intelligent Systems and Computing, 2018, , 53-63.	0.6	4
38	Evaluating distraction of in-vehicle information systems while driving by predicting total eyes-off-road times with keystroke level modeling. Applied Ergonomics, 2017, 58, 543-554.	3.1	29
39	Driver compliance to take-over requests with different auditory outputs in conditional automation. Accident Analysis and Prevention, 2017, 109, 18-28.	5.7	88
40	Control Transition Workshop. , 2017, , .		8
41	Driving performance at lateral system limits during partially automated driving. Accident Analysis and Prevention, 2017, 108, 147-162.	5.7	41
42	Increasing anthropomorphism and trust in automated driving functions by adding speech output. , 2017, , .		49
43	A Human-Machine Interface for Cooperative Highly Automated Driving. Advances in Intelligent Systems and Computing, 2017, , 585-595.	0.6	32
44	The Importance of Interruption Management for Usefulness and Acceptance of Automated Driving. , 2017, , .		22
45	Improving Usefulness of Automated Driving by Lowering Primary Task Interference through HMI Design. Journal of Advanced Transportation, 2017, 2017, 1-12.	1.7	39
46	Your Turn or My Turn?., 2016,,.		35
46	Your Turn or My Turn?., 2016, , . Cooperative warning systems: The impact of false and unnecessary alarms on drivers' compliance. Accident Analysis and Prevention, 2016, 97, 162-175.	5.7	35
	Cooperative warning systems: The impact of false and unnecessary alarms on drivers' compliance.	5.7 3.7	
47	Cooperative warning systems: The impact of false and unnecessary alarms on drivers' compliance. Accident Analysis and Prevention, 2016, 97, 162-175. Secondary task engagement and vehicle automation – Comparing the effects of different automation levels in an on-road experiment. Transportation Research Part F: Traffic Psychology and Behaviour,		49
47	Cooperative warning systems: The impact of false and unnecessary alarms on driversâ∈™ compliance. Accident Analysis and Prevention, 2016, 97, 162-175. Secondary task engagement and vehicle automation â∈" Comparing the effects of different automation levels in an on-road experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 38, 67-82. Controllability of Partially Automated Driving functions â∈" Does it matter whether drivers are allowed to take their hands off the steering wheel?. Transportation Research Part F: Traffic	3.7	108
48	Cooperative warning systems: The impact of false and unnecessary alarms on drivers' compliance. Accident Analysis and Prevention, 2016, 97, 162-175. Secondary task engagement and vehicle automation – Comparing the effects of different automation levels in an on-road experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 38, 67-82. Controllability of Partially Automated Driving functions – Does it matter whether drivers are allowed to take their hands off the steering wheel?. Transportation Research Part F: Traffic Psychology and Behaviour, 2015, 35, 185-198.	3.7	108 62
47 48 49 50	Cooperative warning systems: The impact of false and unnecessary alarms on drivers' compliance. Accident Analysis and Prevention, 2016, 97, 162-175. Secondary task engagement and vehicle automation – Comparing the effects of different automation levels in an on-road experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 38, 67-82. Controllability of Partially Automated Driving functions – Does it matter whether drivers are allowed to take their hands off the steering wheel?. Transportation Research Part F: Traffic Psychology and Behaviour, 2015, 35, 185-198. Determining maximum velocity for automated driving functions. , 2015, , 517-524. Effectiveness of advisory warnings based on cooperative perception. IET Intelligent Transport	3.7	49 108 62 0
47 48 49 50	Cooperative warning systems: The impact of false and unnecessary alarms on drivers' compliance. Accident Analysis and Prevention, 2016, 97, 162-175. Secondary task engagement and vehicle automation – Comparing the effects of different automation levels in an on-road experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 38, 67-82. Controllability of Partially Automated Driving functions – Does it matter whether drivers are allowed to take their hands off the steering wheel?. Transportation Research Part F: Traffic Psychology and Behaviour, 2015, 35, 185-198. Determining maximum velocity for automated driving functions. , 2015, , 517-524. Effectiveness of advisory warnings based on cooperative perception. IET Intelligent Transport Systems, 2015, 9, 606-617.	3.7	49 108 62 0

#	Article	IF	CITATIONS
55	Vorhersage von Blickabwendungszeiten mit Keystroke-Level-Modeling. , 2014, , 239-248.		1
56	Learning and Development of Mental Models during Interactions with Driving Automation: A Simulator Study., 0,,.		20