Mohamed Zahouily

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3214820/publications.pdf Version: 2024-02-01

104 papers	3,479 citations	126858 33 h-index	¹⁶¹⁷⁶⁷ 54 g-index
111	111	111	3837
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydroxyapatite-Based Materials for Environmental Remediation. Environmental Footprints and Eco-design of Products and Processes, 2022, , 55-100.	0.7	0
2	Recent Progress in Polysaccharide-Based Hydrogel Beads as Adsorbent for Water Pollution Remediation. Springer Series in Materials Science, 2022, , 55-88.	0.4	3
3	Nanostructured Na2CaP2O7: A New and Efficient Catalyst for One-Pot Synthesis of 2-Amino-3-Cyanopyridine Derivatives and Evaluation of Their Antibacterial Activity. Applied Sciences (Switzerland), 2022, 12, 5487.	1.3	8
4	Synthesis of urea-containing sodium alginate-g-poly(acrylic acid-co-acrylamide) superabsorbent-fertilizer hydrogel reinforced with carboxylated cellulose nanocrystals for efficient water and nitrogen utilization. Journal of Environmental Chemical Engineering, 2022, 10, 108282.	3.3	29
5	Octadecylamine-functionalized cellulose nanocrystals as durable superhydrophobic surface modifier for polyester coating: Towards oil/water separation. Results in Surfaces and Interfaces, 2022, 8, 100061.	1.0	5
6	Tunable physicochemical properties of lignin and rapeseed oil-based polyurethane coatings with tailored release property of coated NPK fertilizer. Progress in Organic Coatings, 2022, 170, 106982.	1.9	12
7	Design, synthesis, biological evaluation and molecular docking of new 1,3,4-oxadiazole homonucleosides and their double-headed analogs as antitumor agents. Bioorganic Chemistry, 2021, 108, 104558.	2.0	19
8	A Green and Efficient Protocol for the Synthesis of Phenylhydrazone Derivatives Catalyzed by Nanostructured Diphosphate Na ₂ CaP ₂ O ₇ and Screening of Their Antibacterial Activity. ChemistrySelect, 2021, 6, 1366-1371.	0.7	4
9	A novel approach for the synthesis of nanostructured Ag3PO4 from phosphate rock: high catalytic and antibacterial activities. BMC Chemistry, 2021, 15, 42.	1.6	9
10	Discovery of novel furo[2,3â€ <i>d</i>]pyrimidinâ€2â€one–1,3,4â€oxadiazole hybrid derivatives as dual antivira and anticancer agents that induce apoptosis. Archiv Der Pharmazie, 2021, 354, e2100146.	 2.1	19
11	Octadecylamine as chemical modifier for tuned hydrophobicity of surface modified cellulose: toward organophilic cellulose nanocrystals. Cellulose, 2021, 28, 7717-7734.	2.4	24
12	Copper Loaded Hydroxyapatite Nanoparticles as ecoâ€friendly Fenton-like catalyst to Effectively Remove Organic Dyes. Journal of Environmental Chemical Engineering, 2021, 9, 105501.	3.3	37
13	Effective removal of Cu(II) from aqueous solution over graphene oxide encapsulated carboxymethylcellulose-alginate hydrogel microspheres: towards real wastewater treatment plants. Environmental Science and Pollution Research, 2020, 27, 7476-7492.	2.7	39
14	Biodiesel production from rapeseed oil and low free fatty acid waste cooking oil using a cesium modified natural phosphate catalyst. RSC Advances, 2020, 10, 41065-41077.	1.7	23
15	Design, synthesis, biological evaluation and molecular docking of new uracil analogs-1,2,4-oxadiazole hybrids as potential anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127438.	1.0	33
16	Design, synthesis, chemical characterization, biological evaluation, and docking study of new 1,3,4-oxadiazole homonucleoside analogs. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 1088-1107.	0.4	14
17	Surface modification of highly hydrophobic polyester fabric coated with octadecylamine-functionalized graphene nanosheets. RSC Advances, 2020, 10, 24941-24950.	1.7	29
18	Eco-friendly approach to access of quinoxaline derivatives using nanostructured pyrophosphate Na2PdP2O7 as a new, efficient and reusable heterogeneous catalyst. BMC Chemistry, 2020, 14, 6.	1.6	13

#	Article	IF	CITATIONS
19	A new route for the preparation of hydrophobic and antibacterial textiles fabrics using Ag-loaded graphene nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123713.	2.3	41
20	Highly efficient catalytic/sonocatalytic reduction of 4-nitrophenol and antibacterial activity through a bifunctional Ag/ZnO nanohybrid material prepared via a sodium alginate method. Nanoscale Advances, 2019, 1, 3151-3163.	2.2	29
21	Urea-impregnated HAP encapsulated by lignocellulosic biomass-extruded composites: A novel slow-release fertilizer. Environmental Technology and Innovation, 2019, 15, 100403.	3.0	50
22	Aqueous-phase catalytic hydroxylation of phenol with H ₂ O ₂ by using a copper incorporated apatite nanocatalyst. RSC Advances, 2019, 9, 14132-14142.	1.7	36
23	HMDS/KI a simple, a cheap and efficient catalyst for the one-pot synthesis of <i>N</i> -functionalized pyrimidines. Synthetic Communications, 2019, 49, 1802-1812.	1.1	12
24	Organophilic graphene nanosheets as a promising nanofiller for bio-based polyurethane nanocomposites: investigation of the thermal, barrier and mechanical properties. New Journal of Chemistry, 2019, 43, 15659-15672.	1.4	16
25	Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Advances, 2019, 9, 37858-37869.	1.7	113
26	Iron oxide encapsulated by copper-apatite: an efficient magnetic nanocatalyst for <i>N</i> -arylation of imidazole with boronic acid. RSC Advances, 2019, 9, 36471-36478.	1.7	15
27	Sodium modified fluorapatite as a sustainable solid bi-functional catalyst for biodiesel production from rapeseed oil. Renewable Energy, 2019, 133, 1295-1307.	4.3	47
28	Novel bionanocomposite films based on graphene oxide filled starch/polyacrylamide polymer blend: structural, mechanical and water barrier properties. Journal of Polymer Research, 2018, 25, 1.	1.2	37
29	Nanostructured Zirconium Pyrophosphate Catalyzed Diastereoselective Synthesis of β-Amino Ketones via One-Pot Three-Component Mannich Reaction. Catalysis Letters, 2018, 148, 699-711.	1.4	2
30	Nanostructured Pyrophosphate Na ₂ PdP ₂ O ₇ â€Catalyzed Suzukiâ€Miyaura Cross oupling Under Microwave Irradiation. Applied Organometallic Chemistry, 2018, 32, e4232.	1.7	11
31	Magnetic CoFe ₂ O ₄ nanoparticles supported on graphene oxide (CoFe ₂ O ₄ /GO) with high catalytic activity for peroxymonosulfate activation and degradation of rhodamine B. RSC Advances, 2018, 8, 1351-1360.	1.7	108
32	Supercritical CO ₂ drying of alginate/zinc hydrogels: a green and facile route to prepare ZnO foam structures and ZnO nanoparticles. RSC Advances, 2018, 8, 20737-20747.	1.7	12
33	Effect of calcination temperature on the structure and catalytic performance of copper–ceria mixed oxide catalysts in phenol hydroxylation. RSC Advances, 2017, 7, 12586-12597.	1.7	67
34	Surface modification of knit polyester fabric for mechanical, electrical and UV protection properties by coating with graphene oxide, graphene and graphene/silver nanocomposites. Applied Surface Science, 2017, 414, 292-302.	3.1	80
35	Natural Phosphate Supported Titania as a Novel Solid Acid Catalyst for Oleic Acid Esterification. Industrial & Engineering Chemistry Research, 2017, 56, 5821-5832.	1.8	31
36	Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. International Journal of Biological Macromolecules, 2017, 96, 340-352.	3.6	178

MOHAMED ZAHOUILY

#	Article	IF	CITATIONS
37	Sodium modified hydroxyapatite: Highly efficient and stable solid-base catalyst for biodiesel production. Energy Conversion and Management, 2017, 149, 355-367.	4.4	68
38	Graphene Oxide Filled Lignin/Starch Polymer Bionanocomposite: Structural, Physical, and Mechanical Studies. Journal of Agricultural and Food Chemistry, 2017, 65, 10571-10581.	2.4	72
39	Green synthesis of Ag/ZnO nanohybrid using sodium alginate gelation method. Ceramics International, 2017, 43, 13786-13790.	2.3	40
40	QSAR study of 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas using genetic algorithms and artificial neural networks. International Journal of Bioinformatics Research and Applications, 2016, 12, 116.	0.1	1
41	Mechanically strong nanocomposite films based on highly filled carboxymethyl cellulose with graphene oxide. Journal of Applied Polymer Science, 2016, 133, .	1.3	32
42	Modified fluorapatite as highly efficient catalyst for the synthesis of chalcones via Claisen–Schmidt condensation reaction. Journal of Industrial and Engineering Chemistry, 2016, 39, 218-225.	2.9	29
43	Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. Carbohydrate Polymers, 2016, 137, 239-248.	5.1	106
44	Bioâ€nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/chitosan polymer blend. Journal of Applied Polymer Science, 2015, 132, .	1.3	133
45	Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydrate Polymers, 2015, 129, 156-167.	5.1	321
46	Nano-Structured Pyrophosphate Na ₂ CaP ₂ O ₇ as Catalyst for Selective Synthesis of 1,2-Disubstituted Benzimidazoles in Pure Water. Current Organic Chemistry, 2015, 19, 2132-2140.	0.9	8
47	Experimental Design-Based Response Surface Methodology Optimization for Synthesis of <i>β</i> -Mercapto Carbonyl Derivatives as Antimycobacterial Drugs Catalyzed by Calcium Pyrophosphate. International Journal of Medicinal Chemistry, 2014, 2014, 1-5.	2.2	4
48	Microwave-assisted synthesis of mesoporous nano-hydroxyapatite using surfactant templates. CrystEngComm, 2014, 16, 543-549.	1.3	51
49	Smart designing of new hybrid materials based on brushite-alginate and monetite-alginate microspheres: Bio-inspired for sequential nucleation and growth. Materials Science and Engineering C, 2014, 35, 341-346.	3.8	12
50	Graphene oxide reinforced chitosan/polyvinylpyrrolidone polymer bioâ€nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	1.3	79
51	Highly Efficient One-Pot Three-Component Synthesis of Naphthopyran Derivatives in Water Catalyzed by Phosphates. ACS Sustainable Chemistry and Engineering, 2013, 1, 1154-1159.	3.2	36
52	Palladium supported on natural phosphate: Catalyst for Suzuki coupling reactions in water. Applied Catalysis A: General, 2013, 450, 13-18.	2.2	47
53	An Eco-Friendly Paradigm for the Synthesis of α-Hydroxyphosphonates Using Sodium-Modified Fluorapatite under Solventless Conditions. ACS Sustainable Chemistry and Engineering, 2013, 1, 403-409.	3.2	32
54	Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant. Materials Letters, 2013, 107, 189-193.	1.3	31

Mohamed Zahouily

#	Article	IF	CITATIONS
55	Oxidation of Benzylic Alcohols into Aldehydes Under Solvent-Free Microwave Irradiation Using New Catalyst-Support System. Current Organic Chemistry, 2013, 17, 72-78.	0.9	11
56	Tunable Structure of Zirconia Nanoparticles by Biopolymer Gelation: Design, Synthesis and Characterization. European Journal of Inorganic Chemistry, 2012, 2012, 5465-5469.	1.0	7
57	Efficient conversion of aldehydes and ketones into oximes using a nanostructured pyrophosphate catalyst in a solvent-free process. Catalysis Communications, 2012, 29, 53-57.	1.6	24
58	Bi-functional modified-phosphate catalyzed the synthesis of α-α′-(EE)-bis(benzylidene)-cycloalkanones: Microwave versus conventional-heating. Journal of Molecular Catalysis A, 2011, 336, 8-15.	4.8	32
59	Efficient synthesis of chalcone derivatives catalyzed by re-usable hydroxyapatite. Applied Catalysis A: General, 2010, 374, 189-193.	2.2	55
60	Remarkable Catalytic Activity of Sodium-Modified-Hydroxyapatite in the Synthesis of α-Hydroxyphosphonates. Current Organic Chemistry, 2010, 14, 1517-1522.	0.9	13
61	Clean chemical synthesis of 2-amino-chromenes in water catalyzed by nanostructured diphosphate Na2CaP2O7. Green Chemistry, 2010, 12, 2261.	4.6	89
62	Preparation of α-hydroxyphosphonates over phosphate catalysts. Catalysis Communications, 2008, 9, 2503-2508.	1.6	29
63	Phosphates: New Generation of Liquid-Phase Heterogeneous Catalysts in Organic Chemistry. Current Organic Chemistry, 2008, 12, 203-232.	0.9	36
64	One-Pot Synthesis of Antiviral Acyclovir and Other Nucleosides Derivatives Using Doped Natural Phosphate as Lewis Acid Catalyst. Nucleosides, Nucleotides and Nucleic Acids, 2008, 27, 1107-1112.	0.4	8
65	A Quantitative Structure-Activity Relationship Model. Chemical Product and Process Modeling, 2008, 3, .	0.5	1
66	Rapid and Efficient Access to Meso-2,5-cis-disubstituted Pyrrolidines by Double Aza-Michael Reactions of Chiral Primary Amines. Heterocycles, 2007, 73, 751.	0.4	13
67	Natural phosphate and potassium fluoride doped natural phosphate catalysed simple one-pot synthesis of α-amino phosphonates under solvent-free conditions at room temperature. Catalysis Communications, 2007, 8, 225-230.	1.6	21
68	Natural Phosphate Modified with Lithium Nitrate: A New Efficient Catalyst for the Construction of Carbon–Carbon, Carbon–Sulfur, and Carbon–Nitrogen Bonds. Phosphorus, Sulfur and Silicon and the Related Elements, 2007, 182, 1203-1217.	0.8	3
69	Exploring QSAR of non-nucleoside reverse transcriptase inhibitors by artificial neural networks: HEPT derivatives. Arkivoc, 2007, 2007, 245-256.	0.3	3
70	Natural Phosphate and Potassium Fluoride Doped Natural Phosphate as New Catalysts for the Vilsmeir–Haack type Reaction. Journal of Chemical Research, 2006, 2006, 34-36.	0.6	4
71	QSAR for anti-malarial activity of 2-aziridinyl and 2,3-bis(aziridinyl)-1,4-naphthoquinonyl sulfonate and acylate derivatives. Journal of Molecular Modeling, 2006, 12, 398-405.	0.8	14
72	Lewis Acid—Doped Natural Phosphate: New Catalysts for the One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-one ChemInform, 2006, 37, no.	0.1	0

MOHAMED ZAHOUILY

#	Article	IF	CITATIONS
73	Uncatalysed Preparation of α-Amino Phosphonates under Solvent Free Conditions. Journal of Chemical Research, 2005, 2005, 324-327.	0.6	18
74	A mild and efficient method for the protection of carbonyl compounds as dithioacetals, dithiolanes and dithianes catalysed by iodine supported on natural phosphate. Journal of Molecular Catalysis A, 2005, 233, 43-47.	4.8	25
75	Na2CaP2O7 a new catalyst for the synthesis of α-amino phosphonates under solvent-free conditions at room temperature. Comptes Rendus Chimie, 2005, 8, 1954-1959.	0.2	25
76	Three Components Coupling Catalysed by Na2CaP2O7: Synthesis of α-Amino Phosphonates Under Solvent-Free Conditions at Room Temperature. Letters in Organic Chemistry, 2005, 2, 428-432.	0.2	5
77	Lewis Acid–Doped Natural Phosphate: New Catalysts for the Oneâ€Pot Synthesis of 3,4â€Dihydropyrimdinâ€2(1H)â€one. Synthetic Communications, 2005, 35, 2561-2568.	1.1	16
78	Natural Phosphate Modified with Sodium Nitrate: New Efficient Catalyst for the Construction of a Carbon-Sulfur and Carbon-Nitrogen Bonds. Letters in Organic Chemistry, 2005, 2, 354-359.	0.2	8
79	Sodium/Fluorapatite as a New Solid Support for the Synthesis of Â,β-Unsaturated Arylsulfones. Catalysis Letters, 2004, 96, 57-61.	1.4	11
80	Solid catalysts for the production of fine chemicals: the use of natural phosphate alone and doped base catalysts for the synthesis of unsaturated arylsulfones. Tetrahedron, 2004, 60, 1631-1635.	1.0	52
81	Solid Catalysts for the Production of Fine Chemicals: The Use of Natural Phosphate Alone and Doped Base Catalysts for the Synthesis of Unsaturated Arylsulfones ChemInform, 2004, 35, no.	0.1	Ο
82	Natural Phosphate and Potassium Fluoride Doped Natural Phosphate: Efficient Catalysts for the Construction of a Carbon—Nitrogen Bond ChemInform, 2004, 35, no.	0.1	0
83	Natural phosphate and potassium fluoride doped natural phosphate: efficient catalysts for the construction of a carbon–nitrogen bond. Tetrahedron Letters, 2004, 45, 4135-4138.	0.7	33
84	Natural Phosphate Doped with Potassium Fluoride:Â Efficient Catalyst for the Construction of a Carbonâ^'Carbon Bond. Organic Process Research and Development, 2004, 8, 275-278.	1.3	34
85	Natural microphosphate as a catalyst for Knoevenagel condensation: specific surface effect. Reaction Kinetics and Catalysis Letters, 2003, 78, 129-133.	0.6	14
86	Quantitative structure?diastereoselectivity relationships for arylsulfoxide derivatives in radical chemistry. Journal of Molecular Modeling, 2003, 9, 242-247.	0.8	2
87	Na2CaP2O7, a New Catalyst for Michael Addition ChemInform, 2003, 34, no-no.	0.1	Ο
88	A Natural Phosphate and Doped-Catalyzed Michael Addition of Mercaptans to α,β-Unsaturated Carbonyl Compounds ChemInform, 2003, 34, no.	0.1	0
89	Fluoroapatite: Efficient Catalyst for the Michael Addition ChemInform, 2003, 34, no.	0.1	0
90	Na2CaP2O7, a New Catalyst for the Synthesis of Unsaturated Arylsulfones ChemInform, 2003, 34, no.	0.1	0

6

MOHAMED ZAHOUILY

#	Article	IF	CITATIONS
91	Fluorapatite: efficient catalyst for the Michael addition. Tetrahedron Letters, 2003, 44, 2463-2465.	0.7	56
92	Na2CaP2O7, a new catalyst for the synthesis of unsaturated arylsulfones. Tetrahedron Letters, 2003, 44, 3255-3257.	0.7	15
93	Hydroxyapatite: new efficient catalyst for the Michael addition. Catalysis Communications, 2003, 4, 521-524.	1.6	95
94	QSAR for anti-HIV activity of HEPT derivatives. SAR and QSAR in Environmental Research, 2002, 13, 567-577.	1.0	35
95	Structure?cytotoxicity relationships for a series of HEPT derivatives. Journal of Molecular Modeling, 2002, 8, 1-7.	0.8	47
96	Structure-toxicity relationships study of a series of organophosphorus insecticides. Journal of Molecular Modeling, 2002, 8, 168-172.	0.8	22
97	Na2CaP2O7, a new catalyst for Michael addition. Tetrahedron Letters, 2002, 43, 7729-7730.	0.7	45
98	A natural phosphate and doped-catalyzed Michael addition of mercaptans to α,β-unsaturated carbonyl compounds. Tetrahedron Letters, 2002, 43, 8951-8953.	0.7	69
99	Na2CaP2O7, a new catalyst for Knoevenagel reaction. Catalysis Communications, 2001, 2, 101-104.	1.6	55
100	Sulfoxides in radical chemistry. High 1,2-asymmetric induction in radical cyclizations. Tetrahedron Letters, 1999, 40, 495-498.	0.7	16
101	Diastereoselective radical alkylations of alkyl aryl sulfoxides. Tetrahedron Letters, 1996, 37, 8387-8390.	0.7	17
102	Good to Excellent Diastereoselectivities in Asymmetric Radical Cyclizations of Optically Pure β-Alkoxy Vinyl Sulfoxides. Synlett, 1994, 1994, 366-368.	1.0	31
103	Stereoselective additions of silicon centered radical to α-chiral olefins: A Felkin-Anh stereoelectronic control Tetrahedron Letters, 1992, 33, 5511-5514.	0.7	32
104	Acyclic diastereofacial selection in radical addition Tetrahedron Letters, 1991, 32, 3683-3686.	0.7	29