
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3214408/publications.pdf Version: 2024-02-01



ALLAN RASPALIM

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cellular and Molecular Mechanisms of Pain. Cell, 2009, 139, 267-284.                                                                                                                                                                                | 13.5 | 3,090     |
| 2  | The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli. Neuron, 1998, 21, 531-543.                                                                                                                                                | 3.8  | 2,792     |
| 3  | Molecular mechanisms of nociception. Nature, 2001, 413, 203-210.                                                                                                                                                                                    | 13.7 | 2,141     |
| 4  | TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents. Cell, 2006, 124, 1269-1282.                                                                                                                               | 13.5 | 1,672     |
| 5  | Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature, 2001, 411, 957-962.                                                                                                               | 13.7 | 1,144     |
| 6  | Endogenous pain control mechanisms: Review and hypothesis. Annals of Neurology, 1978, 4, 451-462.                                                                                                                                                   | 2.8  | 1,133     |
| 7  | The menthol receptor TRPM8 is the principal detector of environmental cold. Nature, 2007, 448, 204-208.                                                                                                                                             | 13.7 | 1,110     |
| 8  | 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through<br>activation of the irritant receptor TRPA1. Proceedings of the National Academy of Sciences of the<br>United States of America, 2007, 104, 13519-13524. | 3.3  | 655       |
| 9  | Preserved Acute Pain and Reduced Neuropathic Pain in Mice Lacking PKC. Science, 1997, 278, 279-283.                                                                                                                                                 | 6.0  | 645       |
| 10 | Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems. Journal of Comparative Neurology, 1978, 178, 209-224.                                                                         | 0.9  | 628       |
| 11 | The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat:<br>Further studies on the anatomy of pain modulation. Journal of Comparative Neurology, 1979, 187,<br>513-531.                               | 0.9  | 602       |
| 12 | Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious<br>thermal and mechanical stimuli. Proceedings of the National Academy of Sciences of the United States<br>of America, 2009, 106, 9075-9080.        | 3.3  | 581       |
| 13 | Primary afferent tachykinins are required to experience moderate to intense pain. Nature, 1998, 392, 390-394.                                                                                                                                       | 13.7 | 560       |
| 14 | A sensory neuron–expressed IL-31 receptor mediates TÂhelper cell–dependent itch: Involvement of TRPV1<br>andÂTRPA1. Journal of Allergy and Clinical Immunology, 2014, 133, 448-460.e7.                                                              | 1.5  | 556       |
| 15 | Expression of c-fosprotein in interneurons and projection neurons of the rat spinal cord in response to noxious somatic, articular, and visceral stimulation. Journal of Comparative Neurology, 1989, 285, 177-195.                                 | 0.9  | 484       |
| 16 | Injured sensory neuron–derived CSF1 induces microglial proliferation and DAP12-dependent pain.<br>Nature Neuroscience, 2016, 19, 94-101.                                                                                                            | 7.1  | 421       |
| 17 | Dissociation of the Opioid Receptor Mechanisms that Control Mechanical and Heat Pain. Cell, 2009, 137, 1148-1159.                                                                                                                                   | 13.5 | 410       |
| 18 | NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature, 1997, 386. 721-724.                                                                                                                                      | 13.7 | 408       |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature, 2009, 462, 651-655.                                                                                                                       | 13.7 | 392       |
| 20 | TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple<br>mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2009,<br>106, 11330-11335.                 | 3.3  | 386       |
| 21 | Transmitting Pain and Itch Messages: A Contemporary View of the Spinal Cord Circuits that Generate<br>Gate Control. Neuron, 2014, 82, 522-536.                                                                                          | 3.8  | 355       |
| 22 | Immunohistochemical localization of GABAB receptors in the rat central nervous system. , 1999, 405, 299-321.                                                                                                                            |      | 312       |
| 23 | Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat.<br>Journal of Comparative Neurology, 1979, 184, 107-125.                                                                             | 0.9  | 299       |
| 24 | A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature, 2011,<br>479, 410-414.                                                                                                                 | 13.7 | 295       |
| 25 | Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nature Communications, 2020, 11, 264.                                                                                           | 5.8  | 286       |
| 26 | Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions. Pain, 1977, 3,<br>43-56.                                                                                                                          | 2.0  | 285       |
| 27 | Parallel "Pain―Pathways Arise from Subpopulations of Primary Afferent Nociceptor. Neuron, 2005, 47,<br>787-793.                                                                                                                         | 3.8  | 274       |
| 28 | Spared nerve injury model of neuropathic pain in the mouse: a behavioral and anatomic analysis.<br>Journal of Pain, 2003, 4, 465-470.                                                                                                   | 0.7  | 252       |
| 29 | Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury. Cell<br>Reports, 2015, 13, 1246-1257.                                                                                                         | 2.9  | 248       |
| 30 | Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature, 2016, 534, 494-499.                                                                                                                            | 13.7 | 239       |
| 31 | Morphological characterization of substance P receptor-immunoreactive neurons in the rat spinal cord and trigeminal nucleus caudalis. Journal of Comparative Neurology, 1995, 356, 327-344.                                             | 0.9  | 238       |
| 32 | Restriction of Transient Receptor Potential Vanilloid-1 to the Peptidergic Subset of Primary Afferent<br>Neurons Follows Its Developmental Downregulation in Nonpeptidergic Neurons. Journal of<br>Neuroscience, 2011, 31, 10119-10127. | 1.7  | 223       |
| 33 | Transneuronal Labeling of a Nociceptive Pathway, the Spino-(Trigemino-)Parabrachio-Amygdaloid, in<br>the Rat. Journal of Neuroscience, 1997, 17, 3751-3765.                                                                             | 1.7  | 211       |
| 34 | Morphine or U-50,488 suppresses fos protein-like immunoreactivity in the spinal cord and nucleus<br>tractus solitarii evoked by a noxious visceral stimulus in the rat. Journal of Comparative Neurology,<br>1992, 315, 244-253.        | 0.9  | 205       |
| 35 | The Origin of Brainstem Noradrenergic and Serotonergic Projections to the Spinal Cord Dorsal Horn in the Rat. Somatosensory & Motor Research, 1992, 9, 157-173.                                                                         | 0.4  | 203       |
| 36 | Forebrain GABAergic Neuron Precursors Integrate into Adult Spinal Cord and Reduce Injury-Induced<br>Neuropathic Pain. Neuron, 2012, 74, 663-675.                                                                                        | 3.8  | 190       |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Interneurons from Embryonic Development to Cell-Based Therapy. Science, 2014, 344, 1240622.                                                                                                                                                      | 6.0  | 162       |
| 38 | Innocuous, Not Noxious, Input Activates PKCγ Interneurons of the Spinal Dorsal Horn via Myelinated<br>Afferent Fibers. Journal of Neuroscience, 2008, 28, 7936-7944.                                                                             | 1.7  | 158       |
| 39 | Behavioral indices of ongoing pain are largely unchanged in male mice with tissue or nerve injury-induced mechanical hypersensitivity. Pain, 2011, 152, 990-1000.                                                                                | 2.0  | 154       |
| 40 | Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I.<br>GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus.<br>Journal of Comparative Neurology, 1990, 302, 370-377. | 0.9  | 152       |
| 41 | Pain Genes?: Natural Variation and Transgenic Mutants. Annual Review of Neuroscience, 2000, 23, 777-811.                                                                                                                                         | 5.0  | 148       |
| 42 | Differential ATF3 expression in dorsal root ganglion neurons reveals the profile of primary afferents engaged by diverse noxious chemical stimuli. Pain, 2010, 150, 290-301.                                                                     | 2.0  | 136       |
| 43 | Multiple opioid peptides and the modulation of pain: Immunohistochemical analysis of dynorphin and<br>enkephalin in the trigeminal nucleus caudalis and spinal cord of the cat. Journal of Comparative<br>Neurology, 1985, 240, 331-348.         | 0.9  | 127       |
| 44 | Delta Opioid Receptors Presynaptically Regulate Cutaneous Mechanosensory Neuron Input to the Spinal Cord Dorsal Horn. Neuron, 2014, 81, 1312-1327.                                                                                               | 3.8  | 127       |
| 45 | Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain, 2003, 101, 109-116.                                                                                      | 2.0  | 120       |
| 46 | Excitatory Superficial Dorsal Horn Interneurons Are Functionally Heterogeneous and Required for the Full Behavioral Expression of Pain and Itch. Neuron, 2013, 78, 312-324.                                                                      | 3.8  | 118       |
| 47 | Functional Divergence of Delta and Mu Opioid Receptor Organization in CNS Pain Circuits. Neuron, 2018, 98, 90-108.e5.                                                                                                                            | 3.8  | 118       |
| 48 | Pain behavior in the formalin test persists after ablation of the great majority of C-fiber nociceptors.<br>Pain, 2010, 151, 422-429.                                                                                                            | 2.0  | 116       |
| 49 | TMEM16C facilitates Na+-activated K+ currents in rat sensory neurons and regulates pain processing.<br>Nature Neuroscience, 2013, 16, 1284-1290.                                                                                                 | 7.1  | 115       |
| 50 | Structures of the Ïf2 receptor enable docking for bioactive ligand discovery. Nature, 2021, 600, 759-764.                                                                                                                                        | 13.7 | 113       |
| 51 | Microcircuit Mechanisms through which Mediodorsal Thalamic Input to Anterior Cingulate Cortex<br>Exacerbates Pain-Related Aversion. Neuron, 2019, 102, 944-959.e3.                                                                               | 3.8  | 106       |
| 52 | Effects of central lesions on disorders produced by multiple dorsal rhizotomy in rats. Experimental<br>Neurology, 1974, 42, 490-501.                                                                                                             | 2.0  | 101       |
| 53 | VGLUT2 expression in primary afferent neurons is essential for normal acute pain and injury-induced<br>heat hypersensitivity. Proceedings of the National Academy of Sciences of the United States of<br>America, 2010, 107, 22296-22301.        | 3.3  | 98        |
| 54 | Transneuronal tracing of diverse CNS circuits by Cre-mediated induction of wheat germ agglutinin in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15148-15153.                     | 3.3  | 91        |

| #  | Article                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Immunoreactive Vasoactive Intestinal Polypeptide Is Concentrated in the Sacral Spinal Cord: A Possible<br>Marker for Pelvic Visceral Afferent Fibers. Somatosensory & Motor Research, 1983, 1, 69-82.                                                                                                          | 2.2 | 88        |
| 56 | Contribution of $\hat{I}\pm 2$ receptor subtypes to nerve injury-induced pain and its regulation by dexmedetomidine. British Journal of Pharmacology, 2001, 132, 1827-1836.                                                                                                                                    | 2.7 | 88        |
| 57 | Primary Afferent and Spinal Cord Expression of Gastrin-Releasing Peptide: Message, Protein, and Antibody Concerns. Journal of Neuroscience, 2015, 35, 648-657.                                                                                                                                                 | 1.7 | 83        |
| 58 | Anatomical and functional analysis of aquaporin 1, a water channel in primary afferent neurons. Pain, 2007, 131, 8-20.                                                                                                                                                                                         | 2.0 | 81        |
| 59 | A locus and mechanism of action for associative morphine tolerance. Nature Neuroscience, 2000, 3, 47-53.                                                                                                                                                                                                       | 7.1 | 79        |
| 60 | TrkB Signaling Is Required for Both the Induction and Maintenance of Tissue and Nerve Injury-Induced<br>Persistent Pain. Journal of Neuroscience, 2009, 29, 5508-5515.                                                                                                                                         | 1.7 | 77        |
| 61 | Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: II. Electron microscopic immunocytochemical evidence of gabaergic control over the projection from the periaqueductal gray to the nucleus raphe magnus in the rat. Journal of Comparative Neurology, 1990, 302, 378-393. | 0.9 | 75        |
| 62 | Spinal Opioid Analgesia: How Critical Is the Regulation of Substance P Signaling?. Journal of Neuroscience, 1999, 19, 9642-9653.                                                                                                                                                                               | 1.7 | 74        |
| 63 | Convergent neural representations of experimentally-induced acute pain in healthy volunteers: A<br>large-scale fMRI meta-analysis. Neuroscience and Biobehavioral Reviews, 2020, 112, 300-323.                                                                                                                 | 2.9 | 66        |
| 64 | Distribution of glycine receptor immunoreactivity in the spinal cord of the rat: Cytochemical<br>evidence for a differential glycinergic control of lamina I and V nociceptive neurons. Journal of<br>Comparative Neurology, 1988, 278, 330-336.                                                               | 0.9 | 64        |
| 65 | Transplant-mediated enhancement of spinal cord GABAergic inhibition reverses paclitaxel-induced mechanical and heat hypersensitivity. Pain, 2015, 156, 1084-1091.                                                                                                                                              | 2.0 | 64        |
| 66 | Immunoreactive Glutamic Acid Decarboxylase in the Trigeminal Nucleus Caudalis of the Cat: A Light-<br>and Electron-Microscopic Analysis. Somatosensory & Motor Research, 1986, 4, 77-94.                                                                                                                       | 2.2 | 62        |
| 67 | Bulbospinal projections in the primate: A light and electron microscopic study of a pain modulating system. Journal of Comparative Neurology, 1986, 250, 311-323.                                                                                                                                              | 0.9 | 60        |
| 68 | Morphological and functional properties distinguish the substance P and gastrin-releasing peptide subsets of excitatory interneuron in the spinal cord dorsal horn. Pain, 2019, 160, 442-462.                                                                                                                  | 2.0 | 59        |
| 69 | Ultrastructural analysis of dynorphin B-immunoreactive cells and terminals in the superficial dorsal<br>horn of the deafferented spinal cord of the rat. Journal of Comparative Neurology, 1989, 281, 193-205.                                                                                                 | 0.9 | 57        |
| 70 | Genetically expressed transneuronal tracer reveals direct and indirect serotonergic descending control circuits. Journal of Comparative Neurology, 2008, 507, 1990-2003.                                                                                                                                       | 0.9 | 57        |
| 71 | The modalityâ€specific contribution of peptidergic and nonâ€peptidergic nociceptors is manifest at the<br>level of dorsal horn nociresponsive neurons. Journal of Physiology, 2013, 591, 1097-1110.                                                                                                            | 1.3 | 57        |
| 72 | GABAergic circuitry in the rostral ventral medulla of the rat and its relationship to descending antinociceptive controls. Journal of Comparative Neurology, 1991, 303, 316-328.                                                                                                                               | 0.9 | 56        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Inputs to serotonergic neurons revealed by conditional viral transneuronal tracing. Journal of<br>Comparative Neurology, 2009, 514, 145-160.                                                                  | 0.9 | 56        |
| 74 | Profound reduction of somatic and visceral pain in mice by intrathecal administration of the anti-migraine drug, sumatriptan. Pain, 2008, 139, 533-540.                                                       | 2.0 | 51        |
| 75 | GABAergic cell transplants in the anterior cingulate cortex reduce neuropathic pain aversiveness.<br>Brain, 2019, 142, 2655-2669.                                                                             | 3.7 | 49        |
| 76 | Spinal cord projection neurons: a superficial, and also deep analysis. Current Opinion in Physiology, 2019, 11, 109-115.                                                                                      | 0.9 | 47        |
| 77 | The Fiber Caliber of 5-HT Immunoreactive Axons in the Dorsolateral Funiculus of the Spinal Cord of the Rat and Cat. Somatosensory & Motor Research, 1988, 5, 177-185.                                         | 2.2 | 43        |
| 78 | Transplant restoration of spinal cord inhibitory controls ameliorates neuropathic itch. Journal of Clinical Investigation, 2014, 124, 3612-3616.                                                              | 3.9 | 43        |
| 79 | CT-guided injection of a TRPV1 agonist around dorsal root ganglia decreases pain transmission in swine. Science Translational Medicine, 2015, 7, 305ra145.                                                    | 5.8 | 42        |
| 80 | Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice. ELife, 2021, 10, .                                                                                                         | 2.8 | 41        |
| 81 | Insights into the development of opioid tolerance. Pain, 1995, 61, 349-352.                                                                                                                                   | 2.0 | 37        |
| 82 | Lys49 myotoxin from the Brazilian lancehead pit viper elicits pain through regulated ATP release.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2524-E2532. | 3.3 | 37        |
| 83 | Functional Synaptic Integration of Forebrain GABAergic Precursors into the Adult Spinal Cord.<br>Journal of Neuroscience, 2016, 36, 11634-11645.                                                              | 1.7 | 36        |
| 84 | NaV1.1 inhibition can reduce visceral hypersensitivity. JCI Insight, 2018, 3, .                                                                                                                               | 2.3 | 34        |
| 85 | Simultaneous Measurement of Extracellular Morphine and Serotonin in Brain Tissue and CSF by<br>Microdialysis in Awake Rats. Journal of Neurochemistry, 1992, 58, 1773-1781.                                   | 2.1 | 31        |
| 86 | Synergistic antipruritic effects of gamma aminobutyric acid AÂand B agonists in a mouse model of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2017, 140, 454-464.e2.                        | 1.5 | 31        |
| 87 | Immunoreactive pro-enkephalin and pro-dynorphin products are differentially distributed within the nucleus of the solitary tract of the rat. Journal of Comparative Neurology, 1984, 230, 614-619.            | 0.9 | 30        |
| 88 | Neurochemical Characterization of Extracellular Serotonin in the Rostral Ventromedial Medulla and<br>Its Modulation by Noxious Stimuli. Journal of Neurochemistry, 1995, 65, 578-589.                         | 2.1 | 29        |
| 89 | Primary Afferent-Derived BDNF Contributes Minimally to the Processing of Pain and Itch. ENeuro, 2018, 5, ENEURO.0402-18.2018.                                                                                 | 0.9 | 29        |
| 90 | Contribution of colony-stimulating factor 1 to neuropathic pain. Pain Reports, 2021, 6, e883.                                                                                                                 | 1.4 | 27        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Peripheral and central neuronal ATF3 precedes CD4+ T-cell infiltration in EAE. Experimental Neurology, 2016, 283, 224-234.                                                                                | 2.0 | 24        |
| 92  | Pain and itch processing by subpopulations of molecularly diverse spinal and trigeminal projection neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 3.3 | 24        |
| 93  | Toward Better Pain Control. Scientific American, 2006, 294, 60-67.                                                                                                                                        | 1.0 | 23        |
| 94  | Cell transplants to treat the "disease―of neuropathic pain and itch. Pain, 2016, 157, S42-S47.                                                                                                            | 2.0 | 22        |
| 95  | GABA-immunoreactive boutons contact identified OFF and ON cells in the nucleus raphe magnus.<br>Journal of Comparative Neurology, 1997, 378, 196-204.                                                     | 0.9 | 20        |
| 96  | Contribution of the Reelin signaling pathways to nociceptive processing. European Journal of Neuroscience, 2008, 27, 523-537.                                                                             | 1.2 | 20        |
| 97  | Contribution of dorsal horn CGRP-expressing interneurons to mechanical sensitivity. ELife, 2021, 10, .                                                                                                    | 2.8 | 20        |
| 98  | Longâ€ŧerm, dynamic synaptic reorganization after GABAergic precursor cell transplantation into adult<br>mouse spinal cord. Journal of Comparative Neurology, 2018, 526, 480-495.                         | 0.9 | 19        |
| 99  | Pain relief by supraspinal gabapentin requires descending noradrenergic inhibitory controls. Pain<br>Reports, 2018, 3, e659.                                                                              | 1.4 | 19        |
| 100 | Targeting Pain Where It Resides $\hat{a} \in \$ In the Brain. Science Translational Medicine, 2011, 3, 65ps1.                                                                                             | 5.8 | 18        |
| 101 | GABAergic regulation of noradrenergic spinal projection neurons of the A5 cell group in the rat: An electron microscopic analysis. Journal of Comparative Neurology, 1993, 330, 557-570.                  | 0.9 | 17        |
| 102 | Structure-Based Design of a Chemical Probe Set for the 5-HT <sub>5A</sub> Serotonin Receptor.<br>Journal of Medicinal Chemistry, 2022, 65, 4201-4217.                                                     | 2.9 | 17        |
| 103 | Sciatic nerve transection triggers release and intercellular transfer of a genetically expressed macromolecular tracer in dorsal root ganglia. Journal of Comparative Neurology, 2011, 519, 2648-2657.    | 0.9 | 15        |
| 104 | Pain physiology: basic science. Canadian Journal of Anaesthesia, 2002, 49, R1-R3.                                                                                                                         | 0.7 | 14        |
| 105 | Olfactory ensheathing glia express aquaporin 1. Journal of Comparative Neurology, 2010, 518, 4329-4341.                                                                                                   | 0.9 | 14        |
| 106 | Genetic priming of sensory neurons in mice that overexpress PAR2 enhances allergen responsiveness.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .       | 3.3 | 14        |
| 107 | A New Way to Lose Your Nerve. Science of Aging Knowledge Environment: SAGE KE, 2004, 2004, pe15-pe15.                                                                                                     | 0.9 | 13        |
| 108 | Brain Responses to Noxious Stimuli in Patients With Chronic Pain. JAMA Network Open, 2021, 4, e2032236.                                                                                                   | 2.8 | 12        |

| #   | Article                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Neuronal aromatase expression in pain processing regions of the medullary and spinal cord dorsal horn. Journal of Comparative Neurology, 2017, 525, 3414-3428.                                         | 0.9  | 10        |
| 110 | Rebuilding CNS inhibitory circuits to control chronic neuropathic pain and itch. Progress in Brain Research, 2017, 231, 87-105.                                                                        | 0.9  | 10        |
| 111 | Ablation of spinal cord estrogen receptor αâ€expressing interneurons reduces chemically induced modalities of pain and itch. Journal of Comparative Neurology, 2020, 528, 1629-1643.                   | 0.9  | 10        |
| 112 | TMEM16C is involved in thermoregulation and protects rodent pups from febrile seizures.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,<br>e2023342118. | 3.3  | 8         |
| 113 | Mice Lacking Serotonin 2C Receptors Have increased Affective Responses to Aversive Stimuli. PLoS ONE, 2015, 10, e0142906.                                                                              | 1.1  | 8         |
| 114 | Structural imaging studies of patients with chronic pain: an anatomical likelihood estimate meta-analysis. Pain, 2023, 164, e10-e24.                                                                   | 2.0  | 8         |
| 115 | Hippocalcin-like 4, a neural calcium sensor, has a limited contribution to pain and itch processing.<br>PLoS ONE, 2020, 15, e0226289.                                                                  | 1.1  | 6         |
| 116 | History of Spinal Cord "Pain―Pathways Including the Pathways Not Taken. Frontiers in Pain Research,<br>0, 3, .                                                                                         | 0.9  | 5         |
| 117 | Presynaptic Inputs to Any CNS Projection Neuron Identified by Dual Recombinant Virus Infection. PLoS ONE, 2015, 10, e0140681.                                                                          | 1.1  | 4         |
| 118 | Reviews: Topical, systematic and once again, comprehensive. Pain, 2006, 124, 237.                                                                                                                      | 2.0  | 3         |
| 119 | An ACVR1 activating mutation causes neuropathic pain and sensory neuron hyperexcitability in humans. Pain, 2022, Publish Ahead of Print, .                                                             | 2.0  | 3         |
| 120 | Presynaptic control of nociceptor signalling: Differential influence of Mu Opioid and GABAergic<br>Systems. Pain Research and Management, 2000, 5, 185-196.                                            | 0.7  | 2         |
| 121 | Mispositioned Neurokinin-1 Receptor-Expressing Neurons Underlie Heat Hyperalgesia<br>in <i>Disabled-1</i> Mutant Mice. ENeuro, 2019, 6, ENEURO.0131-19.2019.                                           | 0.9  | 2         |
| 122 | Basic Mechanisms and Pathophysiology. , 2010, , 14-23.                                                                                                                                                 |      | 1         |
| 123 | Hospital merger leaves clinical science intact. Nature, 1999, 401, 842-842.                                                                                                                            | 13.7 | 0         |
| 124 | In Memoriam Jeanâ€Marie Besson 1938–2014. European Journal of Pain, 2015, 19, 871-876.                                                                                                                 | 1.4  | 0         |
| 125 | Chemogenetic management of neuropathic pain. Brain, 2017, 140, 2522-2525.                                                                                                                              | 3.7  | 0         |
| 126 | Hippocalcin-like 4, a neural calcium sensor, has a limited contribution to pain and itch processing. ,<br>2020, 15, e0226289.                                                                          |      | 0         |

| #   | Article                                                                                                                       | IF | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 127 | Hippocalcin-like 4, a neural calcium sensor, has a limited contribution to pain and itch processing. ,<br>2020, 15, e0226289. |    | 0         |
| 128 | Hippocalcin-like 4, a neural calcium sensor, has a limited contribution to pain and itch processing. ,<br>2020, 15, e0226289. |    | 0         |
| 129 | Hippocalcin-like 4, a neural calcium sensor, has a limited contribution to pain and itch processing. ,<br>2020, 15, e0226289. |    | 0         |