
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3214297/publications.pdf Version: 2024-02-01

DETED K RIII

#	Article	IF	CITATIONS
1	The Eocene-Oligocene boundary climate transition: an Antarctic perspective. , 2022, , 297-361.		4
2	Absence of a strong, deep-reaching Antarctic Circumpolar Current zonal flow across the Tasmanian gateway during the Oligocene to early Miocene. Global and Planetary Change, 2022, 208, 103718.	3.5	9
3	Enhanced Terrestrial Carbon Export From East Antarctica During the Early Eocene. Paleoceanography and Paleoclimatology, 2022, 37, .	2.9	3
4	DINOSTRAT: a global database of the stratigraphic and paleolatitudinal distribution of Mesozoic–Cenozoic organic-walled dinoflagellate cysts. Earth System Science Data, 2022, 14, 579-617.	9.9	10
5	Vegetation change across the Drake Passage region linked to late Eocene cooling and glacial disturbance after the Eocene–Oligocene transition. Climate of the Past, 2022, 18, 209-232.	3.4	11
6	Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and <i>p</i> CO ₂ . Climate of the Past, 2022, 18, 525-546.	3.4	6
7	Sedimentary microplankton distributions are shaped by oceanographically connected areas. Earth System Dynamics, 2022, 13, 357-371.	7.1	3
8	Subduction initiation in the Scotia Sea region and opening of the Drake Passage: When and why?. Earth-Science Reviews, 2021, 215, 103551.	9.1	40
9	Campanian-Eocene dinoflagellate cyst biostratigraphy in the Southern Andean foreland basin: Implications for Drake Passage throughflow. Andean Geology, 2021, 48, 185.	0.5	11
10	Temperate Oligocene surface ocean conditions offshore of Cape Adare, Ross Sea, Antarctica. Climate of the Past, 2021, 17, 1423-1442.	3.4	9
11	Eocene-Oligocene paleoenvironmental changes in the South Orkney Microcontinent (Antarctica) linked to the opening of Powell Basin. Global and Planetary Change, 2021, 204, 103581.	3.5	8
12	Late Eocene–early Miocene evolution of the southern Australian subtropical front: a marine palynological approach. Journal of Micropalaeontology, 2021, 40, 175-193.	3.6	9
13	Gateway-driven weakening of ocean gyres leads to Southern Ocean cooling. Nature Communications, 2021, 12, 6465.	12.8	32
14	Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172. Climate of the Past, 2021, 17, 2393-2425.	3.4	14
15	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. PLoS ONE, 2020, 15, e0238650.	2.5	18
16	A Warm, Stratified, and Restricted Labrador Sea Across the Middle Eocene and Its Climatic Optimum. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003932.	2.9	12
17	Late Oligocene-Miocene proto-Antarctic Circumpolar Current dynamics off the Wilkes Land margin, East Antarctica. Global and Planetary Change, 2020, 191, 103221.	3.5	20
18	Surface-circulation change in the southwest Pacific Ocean across the Middle Eocene Climatic Optimum: inferences from dinoflagellate cysts and biomarker paleothermometry. Climate of the Past, 2020, 16, 1667-1689.	3.4	17

#	Article	IF	CITATIONS
19	The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5. Climate of the Past, 2020, 16, 2573-2597.	3.4	34
20	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0
21	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0
22	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0
23	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0
24	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0
25	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0
26	The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geoscientific Model Development, 2019, 12, 3149-3206.	3.6	131
27	Transport Bias by Ocean Currents in Sedimentary Microplankton Assemblages: Implications for Paleoceanographic Reconstructions. Paleoceanography and Paleoclimatology, 2019, 34, 1178-1194.	2.9	32
28	Harmful algae and export production collapse in the equatorial Atlantic during the zenith of Middle Eocene Climatic Optimum warmth. Geology, 2019, 47, 247-250.	4.4	21
29	Late Eocene Southern Ocean Cooling and Invigoration of Circulation Preconditioned Antarctica for Fullâ€Scale Glaciation. Geochemistry, Geophysics, Geosystems, 2019, 20, 2214-2234.	2.5	55
30	Nucicla umbiliphora gen. et sp. nov.: a Quaternary peridinioid dinoflagellate cyst from the Antarctic margin. Palynology, 2019, 43, 94-103.	1.5	3
31	Growing <i>Azolla</i> to produce sustainable protein feed: the effect of differing species and CO ₂ concentrations on biomass productivity and chemical composition. Journal of the Science of Food and Agriculture, 2018, 98, 4759-4768.	3.5	48
32	Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nature Communications, 2018, 9, 317.	12.8	80
33	Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 2: Insights from Oligocene–Miocene dinoflagellate cyst assemblages. Climate of the Past, 2018, 14, 1015-1033.	3.4	41
34	Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 1: Insights from late Oligocene astronomically paced contourite sedimentation. Climate of the Past, 2018, 14, 991-1014.	3.4	40
35	Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX ₈₆ -based sea surface temperature reconstructions. Climate of the Past, 2018, 14, 1275-1297.	3.4	42
36	Synchronous tropical and polar temperature evolution in the Eocene. Nature, 2018, 559, 382-386.	27.8	185

#	Article	IF	CITATIONS
37	The Central Paratethys during Oligocene as an ancient counterpart of the present-day Black Sea: Unique records from the coccolith limestones. Marine Geology, 2018, 403, 301-328.	2.1	13
38	Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal. Journal of Micropalaeontology, 2018, 37, 105-138.	3.6	32
39	Identification of the Paleocene–Eocene boundary in coastal strata in the Otway Basin, Victoria, Australia. Journal of Micropalaeontology, 2018, 37, 317-339.	3.6	21
40	A review of the ecological affinities of marine organic microfossils from a Holocene record offshore of Adélie Land (East Antarctica). Journal of Micropalaeontology, 2018, 37, 445-497.	3.6	14
41	The age of the Takatika Grit, Chatham Islands, New Zealand. Alcheringa, 2017, 41, 383-396.	1.2	5
42	An Antarctic stratigraphic record of stepwise ice growth through the Eocene-Oligocene transition. Bulletin of the Geological Society of America, 2017, 129, 318-330.	3.3	35
43	Comment on â€~ <i>Wetzeliella</i> and its allies – the â€~hole' story: a taxonomic revision of the Paleogene dinoflagellate subfamily Wetzelielloideae' by Williams et al. (2015). Palynology, 2017, 41, 423-429.	2 1.5	19
44	A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging. Biogeosciences, 2017, 14, 2089-2100.	3.3	14
45	Model simulations of early westward flow across the Tasman Gateway during the early Eocene. Climate of the Past, 2016, 12, 807-817.	3.4	20
46	Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic. Climate of the Past, 2016, 12, 1635-1644.	3.4	41
47	(2450–2451) Proposals to conserve the names <i>Selenopemphix</i> against <i>Margosphaera</i> , and <i>S. nephroides</i> against <i>M. velata</i> (<i>Dinophyceae</i>). Taxon, 2016, 65, 636-637.	0.7	2
48	A Paleolatitude Calculator for Paleoclimate Studies. PLoS ONE, 2015, 10, e0126946.	2.5	376
49	A new genus and two new species of dinoflagellate cysts from lower Eocene marine sediments of the Wilkes Land Margin, Antarctica. Review of Palaeobotany and Palynology, 2015, 220, 88-97.	1.5	2
50	The role of ocean gateways on cooling climate on long time scales. Global and Planetary Change, 2014, 119, 1-22.	3.5	80
51	Organic-rich sedimentation in the South Pacific Ocean associated with Late Paleocene climatic cooling. Earth-Science Reviews, 2014, 134, 81-97.	9.1	50
52	Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nature Geoscience, 2013, 6, 765-769.	12.9	219
53	Early to Middle Eocene vegetation dynamics at the Wilkes Land Margin (Antarctica). Review of Palaeobotany and Palynology, 2013, 197, 119-142.	1.5	54
54	A magneto- and chemostratigraphically calibrated dinoflagellate cyst zonation of the early Palaeogene South Pacific Ocean. Earth-Science Reviews, 2013, 124, 1-31.	9.1	72

#	Article	IF	CITATIONS
55	Relative sea-level rise around East Antarctica during Oligocene glaciation. Nature Geoscience, 2013, 6, 380-384.	12.9	63
56	A middle Eocene carbon cycle conundrum. Nature Geoscience, 2013, 6, 429-434.	12.9	68
57	Reorganization of Southern Ocean Plankton Ecosystem at the Onset of Antarctic Glaciation. Science, 2013, 340, 341-344.	12.6	97
58	Eocene cooling linked to early flow across the Tasmanian Gateway. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9645-9650.	7.1	204
59	Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature, 2012, 488, 73-77.	27.8	266
60	Environmental forcings of Paleogene Southern Ocean dinoflagellate biogeography. Paleoceanography, 2011, 26, .	3.0	71
61	Malvinia escutiana, a new biostratigraphically important Oligocene dinoflagellate cyst from the Southern Ocean. Review of Palaeobotany and Palynology, 2011, 165, 175-182.	1.5	26
62	Transient Middle Eocene Atmospheric CO ₂ and Temperature Variations. Science, 2010, 330, 819-821.	12.6	179
63	Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature, 2009, 461, 776-779.	27.8	325
64	Orbitally forced climate changes in the Tasman sector during the Middle Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280, 361-370.	2.3	23
65	Significant continental ice volumes on mid-Paleocene Antarctica? Latitudinal temperature gradients, sea level change and the carbon cycle. Rendiconti Online Societa Geologica Italiana, 0, 31, 31-32.	0.3	0
66	Is there a causal link between early Eocene opening of the Tasmanian Gateway and the onset of Eocene cooling?. Rendiconti Online Societa Geologica Italiana, 0, 31, 29-30.	0.3	0
67	Climate and oceanography of the Tasmanian Gateway during the Middle Eocene Climatic Optimum (MECO). Rendiconti Online Societa Geologica Italiana, 0, 31, 226-227.	0.3	0
68	Developing community-based scientific priorities and new drilling proposals in the southern Indian and southwestern Pacific oceans. Scientific Drilling, 0, 24, 61-70.	0.6	2