Rodrigo Rojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3214236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cultural Values in Water Management and Governance: Where Do We Stand?. Water (Switzerland), 2022, 14, 803.	1.2	6
2	Participatory and Integrated Modelling under Contentious Water Use in Semiarid Basins. Hydrology, 2022, 9, 49.	1.3	7
3	A benefit cost analysis of strategic and operational management options for water management in hyper-arid southern Peru. Agricultural Water Management, 2022, 265, 107518.	2.4	2
4	Trends in Groundwater Levels in Alluvial Aquifers of the Murray–Darling Basin and Their Attributions. Water (Switzerland), 2022, 14, 1808.	1.2	8
5	Collaborate or perish: water resources management under contentious water use in a semiarid basin. International Journal of River Basin Management, 2020, 18, 421-437.	1.5	18
6	Advancing Collaborative Water Governance: Unravelling Stakeholders' Relationships and Influences in Contentious River Basins. Water (Switzerland), 2020, 12, 3316.	1.2	21
7	Sustainable groundwater management: How long and what will it take?. Global Environmental Change, 2019, 58, 101972.	3.6	33
8	Groundwater Resource Assessment and Conceptualization in the Pilbara Region, Western Australia. Earth Systems and Environment, 2018, 2, 345-365.	3.0	6
9	Chronology, stratigraphy and hydrological modelling of extensive wetlands and paleolakes in the hyperarid core of the Atacama Desert during the late quaternary. Quaternary Science Reviews, 2018, 197, 224-245.	1.4	52
10	Social tipping points in global groundwater management. Nature Human Behaviour, 2017, 1, 640-649.	6.2	89
11	Multi-hazard assessment in Europe under climate change. Climatic Change, 2016, 137, 105-119.	1.7	201
12	Structured Coupling of Probability Loss Distributions: Assessing Joint Flood Risk in Multiple River Basins. Risk Analysis, 2015, 35, 2102-2119.	1.5	24
13	An agent-based platform for simulating complex human–aquifer interactions in managed groundwater systems. Environmental Modelling and Software, 2015, 73, 305-323.	1.9	66
14	Ensemble projections of future streamflow droughts in Europe. Hydrology and Earth System Sciences, 2014, 18, 85-108.	1.9	211
15	Reply to 'Statistics of flood risk'. Nature Climate Change, 2014, 4, 844-845.	8.1	2
16	Increasing stress on disaster-risk finance due to large floods. Nature Climate Change, 2014, 4, 264-268.	8.1	425
17	Climate change and river floods in the European Union: Socio-economic consequences and the costs and benefits of adaptation. Global Environmental Change, 2013, 23, 1737-1751.	3.6	222
18	Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. Journal of Hydrology, 2013, 499, 324-338.	2.3	187

RODRIGO ROJAS

#	Article	IF	CITATIONS
19	Standard Particle Swarm Optimisation 2011 at CEC-2013: A baseline for future PSO improvements. , 2013, , .		180
20	A model-independent Particle Swarm Optimisation software for model calibration. Environmental Modelling and Software, 2013, 43, 5-25.	1.9	119
21	Validation of Satellite-Based Precipitation Products over Sparsely Gauged African River Basins. Journal of Hydrometeorology, 2012, 13, 1760-1783.	0.7	256
22	Assessment of future flood hazard in Europe using a large ensemble of bias orrected regional climate simulations. Journal of Geophysical Research, 2012, 117, .	3.3	85
23	Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, 2012, 117, .	3.3	89
24	Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations. Hydrology and Earth System Sciences, 2011, 15, 2599-2620.	1.9	124
25	Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling. Journal of Hydrology, 2010, 394, 416-435.	2.3	82
26	Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal – North Chile. Hydrology and Earth System Sciences, 2010, 14, 171-192.	1.9	60
27	On the value of conditioning data to reduce conceptual model uncertainty in groundwater modeling. Water Resources Research, 2010, 46, .	1.7	41
28	Sensitivity analysis of prior model probabilities and the value of prior knowledge in the assessment of conceptual model uncertainty in groundwater modelling. Hydrological Processes, 2009, 23, 1131-1146.	1.1	38
29	Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resources Research, 2008, 44, .	1.7	175
30	Groundwater flow modelling of the regional aquifer of the Pampa del Tamarugal, northern Chile. Hydrogeology Journal, 2007, 15, 537-551.	0.9	54