Min Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3214231/publications.pdf Version: 2024-02-01

		126907	85541
105	5,414	33	71
papers	citations	h-index	g-index
122	122	122	6717
all docs	docs citations	times ranked	citing authors

MIN KIM

#	Article	IF	CITATIONS
1	Biosensors Based on Bivalent and Multivalent Recognition by Nucleic Acid Scaffolds. Applied Sciences (Switzerland), 2022, 12, 1717.	2.5	2
2	Post-synthetic ligand cyclization in metal–organic frameworks through functional group connection with regioisomerism. Chemical Communications, 2022, 58, 5948-5951.	4.1	5
3	Recent Advances in Catalytic [3,3]-Sigmatropic Rearrangements. Catalysts, 2022, 12, 227.	3.5	11
4	Uncoordinated tetrazole ligands in metal–organic frameworks for <scp>proton onductivity</scp> studies. Bulletin of the Korean Chemical Society, 2022, 43, 912-917.	1.9	11
5	Effect of <i>N</i> -Methylation on Dopamine Surface Chemistry. Langmuir, 2022, 38, 6404-6410.	3.5	5
6	Patchwork Metal–Organic Frameworks by Radical-Mediated Heterografting of Star Polymers for Surface Modification. Inorganic Chemistry, 2022, 61, 10365-10372.	4.0	4
7	Visible Light Photochemical Reactions for Nucleic Acid-Based Technologies. Molecules, 2021, 26, 556.	3.8	5
8	Strategies in Metal– <scp>Organic Frameworkâ€based</scp> Catalysts for the Aerobic Oxidation of Alcohols and Recent Progress. Bulletin of the Korean Chemical Society, 2021, 42, 359-368.	1.9	25
9	Pdâ€Catalyzed Regio―and Stereoselective <i>sp</i> ³ Câ~H Arylation of Primary Aliphatic Amines: Mechanistic Studies and Synthetic Applications. European Journal of Organic Chemistry, 2021, 2021, 1136-1145.	2.4	3
10	Amineâ€Tagged Fragmented Ligand Installation for Covalent Modification of MOFâ€74. Angewandte Chemie, 2021, 133, 9382-9386.	2.0	4
11	Amineâ€Tagged Fragmented Ligand Installation for Covalent Modification of MOFâ€74. Angewandte Chemie - International Edition, 2021, 60, 9296-9300.	13.8	26
12	<i>>p</i> Type Double Doping and the Diamond-like Morphology Shift of the Zintl Phase Thermoelectric Materials: The Ca _{11–<i>x</i>} A _{<i>x</i>} Sb _{10–<i>y</i>} Ge _{<i>z</i>} (A =)	Tj Æt Qq0	0 @rgBT /Ov
13	Chemistry, 2021, 60, 10124-10136. Multiple functional groups in metal–organic frameworks and their positional regioisomerism. Coordination Chemistry Reviews, 2021, 438, 213892.	18.8	28
14	TEMPO-radical-bearing metal–organic frameworks and covalent organic frameworks for catalytic applications. Dalton Transactions, 2021, 50, 14081-14090.	3.3	8
15	Synthesis and Photophysical Properties of a Series of Dimeric Indium Quinolinates. Molecules, 2021, 26, 34.	3.8	2
16	Transformation of tertâ€Butyl Amide Directing Groups to Nitriles in Iridium atalyzed C–H Bond Functionalizations. Asian Journal of Organic Chemistry, 2021, 10, 3411.	2.7	1
17	N-Heterocyclic Carbene (NHC) Complexes of Rhodium and Iridium. , 2021, , .		0
18	Cobalt-Catalyzed Cyclization of 2-Bromobenzamides with Carbodiimides: A New Route for the Synthesis of 3-(Imino)isoindolin-1-ones. Molecules, 2021, 26, 7212.	3.8	1

#	Article	IF	CITATIONS
19	Effect of Head Structure on ATP Detection in Polydiacetylene Systems. Macromolecular Research, 2020, 28, 62-66.	2.4	6
20	Sequential Connection of Mutually Exclusive Catalytic Reactions by a Method Controlling the Presence of an MOF Catalyst: One-Pot Oxidation of Alcohols to Carboxylic Acids. Inorganic Chemistry, 2020, 59, 17573-17582.	4.0	19
21	Transition Metal-Catalyzed α-Position Carbon–Carbon Bond Formations of Carbonyl Derivatives. Catalysts, 2020, 10, 861.	3.5	21
22	Augmentation of the antitumor effects of PARP inhibitors in triple-negative breast cancer via degradation by hydrophobic tagging modulation. European Journal of Medicinal Chemistry, 2020, 204, 112635.	5.5	18
23	Pore Engineering of Covalently Connected Metal–Organic Framework Nanoparticle–Mixed-Matrix Membrane Composites for Molecular Separation. ACS Applied Nano Materials, 2020, 3, 9356-9362.	5.0	16
24	Dual-fixations of europium cations and TEMPO species on metal–organic frameworks for the aerobic oxidation of alcohols. Dalton Transactions, 2020, 49, 8060-8066.	3.3	12
25	Pore engineering of metal-organic frameworks with coordinating functionalities. Coordination Chemistry Reviews, 2020, 420, 213377.	18.8	75
26	Transient Directing Groupâ€Assisted C─H Bond Functionalization of Aliphatic Amines: Strategies for Efficiency and Siteâ€Selectivity. Bulletin of the Korean Chemical Society, 2020, 41, 582-587.	1.9	11
27	Experimental, Structural, and Computational Investigation of Mixed Metal–Organic Frameworks from Regioisomeric Ligands for Porosity Control. Crystal Growth and Design, 2020, 20, 5338-5345.	3.0	3
28	Synthesis and Photophysical Properties of (Cl 2 Ph)Salenâ€based Indium Complexes. Bulletin of the Korean Chemical Society, 2020, 41, 748-752.	1.9	4
29	Surfaceâ€Deactivated Core–Shell Metal–Organic Framework by Simple Ligand Exchange for Enhanced Size Discrimination in Aerobic Oxidation of Alcohols. Chemistry - A European Journal, 2020, 26, 7568-7572.	3.3	34
30	Mussel-Inspired, One-Step Thiol Functionalization of Solid Surfaces. Langmuir, 2020, 36, 1608-1614.	3.5	10
31	Development of Heterogeneous Enantioselective Catalysts using Chiral Metal-Organic Frameworks (MOFs). Journal of Visualized Experiments, 2020, , .	0.3	1
32	Ir-Catalyzed C–H Amidation Using Carbamoyl Azides for the Syntheses of Unsymmetrical Ureas. Journal of Organic Chemistry, 2020, 85, 6233-6241.	3.2	11
33	Positional Installation of Unsymmetrical Fluorine Functionalities onto Metal–Organic Frameworks for Efficient Carbon Dioxide Separation under Humid Conditions. Inorganic Chemistry, 2020, 59, 18048-18054.	4.0	14
34	Effect of the Metal within Regioisomeric Paddleâ€Wheelâ€Type Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 14414-14420.	3.3	7
35	Carbazole-Appended Salen–Indium Conjugate Systems: Synthesis and Enhanced Luminescence Efficiency. Inorganic Chemistry, 2019, 58, 12358-12364.	4.0	15
36	Synthesis of o-carborane-functionalized metal–organic frameworks through ligand exchanges for aggregation-induced emission in the solid state. Chemical Communications, 2019, 55, 11844-11847.	4.1	14

#	Article	IF	CITATIONS
37	Systematic Control of the Overlapping Energy Region for an Efficient Intramolecular Energy Transfer: Functionalized Salen–Al/Triphenylamine Guest–Host Assemblies. Inorganic Chemistry, 2019, 58, 2454-2462.	4.0	13
38	A Series of Quinolinol-Based Indium Luminophores: A Rational Design Approach for Manipulating Photophysical Properties. Inorganic Chemistry, 2019, 58, 8056-8063.	4.0	8
39	Photochemical Control of Polydopamine Coating in an Aprotic Organic Solvent. Asian Journal of Organic Chemistry, 2019, 8, 1610-1612.	2.7	4
40	Halide-Free and Bifunctional One-Component Catalysts for the Coupling of Carbon Dioxide and Epoxides. Inorganic Chemistry, 2019, 58, 5922-5931.	4.0	12
41	4-(3-Aminopropyl)-benzene-1,2-diol: An Improved Material-Independent Surface-Coating Reagent Compared to Dopamine. Langmuir, 2019, 35, 6898-6904.	3.5	8
42	Identification of Reaction Sites on Metal–Organic Framework-Based Asymmetric Catalysts for Carbonyl–Ene Reactions. ACS Catalysis, 2019, 9, 3969-3977.	11.2	24
43	Recent Organic Transformations with Silver Carbonate as a Key External Base and Oxidant. Catalysts, 2019, 9, 1032.	3.5	11
44	New Aspects of Recently Developed Rhodium(Nâ€Heterocyclic Carbene)â€Catalyzed Organic Transformations. Advanced Synthesis and Catalysis, 2019, 361, 1479-1499.	4.3	30
45	Europiumâ€Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones and Photoluminescence Tracking. Advanced Synthesis and Catalysis, 2019, 361, 1259-1264.	4.3	18
46	Direct synthesis of anthracenes from o-tolualdehydes and aryl iodides through Pd(II)-Catalyzed sp C H arylation and electrophilic aromatic cyclization. Tetrahedron, 2018, 74, 2048-2055.	1.9	28
47	Salen-indium/triarylborane triads: synthesis and ratiometric emission-colour changes by fluoride ion binding. Dalton Transactions, 2018, 47, 5310-5317.	3.3	13
48	Functional group effects on a metal-organic framework catalyst for CO2 cycloaddition. Journal of Industrial and Engineering Chemistry, 2018, 64, 478-483.	5.8	62
49	A salen–Al/carbazole dyad-based guest–host assembly: enhancement of luminescence efficiency <i>via</i> intramolecular energy transfer. Chemical Communications, 2018, 54, 4712-4715.	4.1	13
50	Defect Engineering into Metal–Organic Frameworks for the Rapid and Sequential Installation of Functionalities. Inorganic Chemistry, 2018, 57, 1040-1047.	4.0	31
51	Stepwise blue-red-yellow color change of a polydiacetylene sensor through internal and external transitions. Dyes and Pigments, 2018, 149, 242-245.	3.7	13
52	Adsorptive separation of xenon/krypton mixtures using ligand controls in a zirconium-based metal-organic framework. Chemical Engineering Journal, 2018, 335, 345-351.	12.7	55
53	Three Component Controls in Pillared Metal-Organic Frameworks for Catalytic Carbon Dioxide Fixation. Catalysts, 2018, 8, 565.	3.5	5
54	Systematic design of indium-based luminophores with color-tunable emission via combined manipulation of HOMO and LUMO levels. Dyes and Pigments, 2018, 158, 285-294.	3.7	17

#	Article	IF	CITATIONS
55	Thiol–ene photopolymerization of vinyl-functionalized metal–organic frameworks towards mixed-matrix membranes. Journal of Materials Chemistry A, 2018, 6, 21961-21968.	10.3	44
56	Intriguing Indium-salen Complexes as Multicolor Luminophores. Inorganic Chemistry, 2017, 56, 2621-2626.	4.0	28
57	Systemized organic functional group controls in polydiacetylenes and their effects on color changes. Journal of Applied Polymer Science, 2017, 134, 45011.	2.6	15
58	Synthesis of functionalized titanium-carboxylate molecular clusters and their catalytic activity. Journal of Industrial and Engineering Chemistry, 2017, 53, 171-176.	5.8	12
59	Highly Active Salenâ€Based Aluminum Catalyst for the Coupling of Carbon Dioxide with Epoxides at Ambient Temperature. European Journal of Inorganic Chemistry, 2017, 2017, 5372-5378.	2.0	27
60	Flexibility in metal–organic frameworks derived from positional and electronic effects of functional groups. CrystEngComm, 2017, 19, 5361-5368.	2.6	12
61	Synthesis, characterization, and cycloaddition reaction studies of zinc(II) acetate complexes containing 2,6-bis(pyrazol-1-yl)pyridine and 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine ligands. Polyhedron, 2017, 125, 101-106.	2.2	10
62	Visible Light-Mediated Installation of Halogen Functionalities into Multiple Bond Systems. ChemistrySelect, 2017, 2, 9136-9146.	1.5	7
63	A potential role of a substrate as a base for the deprotonation pathway in Rh-catalysed C–H amination of heteroarenes: DFT insights. Dalton Transactions, 2016, 45, 7980-7985.	3.3	14
64	Selective Synthesis of Homoleptic and Heteroleptic Triarylboranes and Their Novel Colour Tunable Properties. ChemistrySelect, 2016, 1, 1239-1242.	1.5	3
65	Tertiary amines: A new class of highly efficient organocatalysts for CO2 fixations. Journal of Industrial and Engineering Chemistry, 2016, 44, 210-215.	5.8	48
66	Aromatic Substituent Effects on the Flexibility of Metal–Organic Frameworks. Inorganic Chemistry, 2016, 55, 7576-7581.	4.0	22
67	Trans-fused 5-[(tert-Butoxtycarbonyl)amino]octahydroindenes as a protease activated receptor-1 (PAR1) antagonist. Archives of Pharmacal Research, 2016, 39, 1275-1295.	6.3	2
68	A Versatile Cobalt Catalyst for Secondary and Tertiary Amide Synthesis from Various Carboxylic Acid Derivatives. Asian Journal of Organic Chemistry, 2016, 5, 222-231.	2.7	10
69	Temperature-controlled acyloxylations and hydroxylations of bromoarene by a silver salt. Tetrahedron Letters, 2016, 57, 781-783.	1.4	10
70	A Tuned Bicyclic Proazaphosphatrane for Catalytically Enhanced <i>N</i> â€Arylation Reactions with Aryl Chlorides. European Journal of Organic Chemistry, 2015, 2015, 1954-1960.	2.4	8
71	MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion. Journal of Materials Chemistry A, 2015, 3, 4738-4744.	10.3	168
72	Copper-Catalyzed Selective Arylations of Benzoxazoles with Aryl Iodides. Journal of Organic Chemistry, 2015, 80, 3670-3676.	3.2	29

#	Article	IF	CITATIONS
73	Synthesis of secondary and tertiary amine-containing MOFs: C–N bond cleavage during MOF synthesis. CrystEngComm, 2015, 17, 5644-5650.	2.6	10
74	Cobalt/nitrophenolate-catalyzed selective conversion of aldoximes into nitriles or amides. Catalysis Communications, 2015, 60, 120-123.	3.3	8
75	Charged functional group effects on a metal–organic framework for selective organic dye adsorptions. CrystEngComm, 2015, 17, 8418-8422.	2.6	40
76	Zirconocene Complexes as Catalysts for the Cycloaddition of CO ₂ to Propylene Oxide. European Journal of Inorganic Chemistry, 2014, 2014, 5107-5112.	2.0	12
77	Titanium complexes containing bidentate benzotriazole ligands as catalysts for the ring opening polymerization of lactide. Polyhedron, 2014, 67, 286-294.	2.2	23
78	Zirconium complexes with pendant aryloxy groups attached to the metallocene moiety by ethyl or hexyl spacers. Polyhedron, 2014, 67, 205-212.	2.2	4
79	Hydrogen-Bond-Assisted Controlled C–H Functionalization via Adaptive Recognition of a Purine Directing Group. Journal of the American Chemical Society, 2014, 136, 1132-1140.	13.7	146
80	Synergistic Effect of a Bis(proazaphosphatrane) in Mild Palladiumâ€Catalyzed Direct αâ€Arylations of Nitriles with Aryl Chlorides. European Journal of Organic Chemistry, 2014, 2014, 6025-6029.	2.4	13
81	Dinuclear Aluminum Complexes as Catalysts for Cycloaddition of CO2 to Epoxides. Organometallics, 2014, 33, 2770-2775.	2.3	48
82	Synthetic Uses of Ammonia in Transitionâ€Metal Catalysis. European Journal of Organic Chemistry, 2013, 2013, 3201-3213.	2.4	87
83	Site-selective cyclometalation of a metal–organic framework. Chemical Science, 2013, 4, 601-605.	7.4	49
84	Discovery, development, and functionalization of Zr(<scp>iv</scp>)-based metal–organic frameworks. CrystEngComm, 2012, 14, 4096-4104.	2.6	282
85	Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization. Langmuir, 2012, 28, 15606-15613.	3.5	505
86	Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 18082-18088.	13.7	702
87	Functional tolerance in an isoreticular series of highly porous metal–organic frameworks. Dalton Transactions, 2012, 41, 6277.	3.3	17
88	Single-Atom Ligand Changes Affect Breathing in an Extended Metal–Organic Framework. Inorganic Chemistry, 2012, 51, 5671-5676.	4.0	61
89	Postsynthetic ligand exchange as a route to functionalization of â€~inert' metal–organic frameworks. Chemical Science, 2012, 3, 126-130.	7.4	403
90	Intramolecular Oxidative Diamination and Aminohydroxylation of Olefins under Metal-Free Conditions. Organic Letters, 2012, 14, 1424-1427.	4.6	94

#	Article	IF	CITATIONS
91	Microwave-Assisted Cyanation of an Aryl Bromide Directly on a Metalâ^'Organic Framework. Inorganic Chemistry, 2011, 50, 729-731.	4.0	81
92	Rhodium(NHC)-Catalyzed <i>O</i> -Arylation of Aryl Bromides. Organic Letters, 2011, 13, 2368-2371.	4.6	52
93	Intermolecular Oxidative C–N Bond Formation under Metal-Free Conditions: Control of Chemoselectivity between Aryl sp ² and Benzylic sp ³ C–H Bond Imidation. Journal of the American Chemical Society, 2011, 133, 16382-16385.	13.7	365
94	Postsynthetic modification at orthogonal reactive sites on mixed, bifunctional metal–organic frameworks. Chemical Communications, 2011, 47, 7629.	4.1	71
95	Rh(NHC)-Catalyzed Direct and Selective Arylation of Quinolines at the 8-Position. Journal of the American Chemical Society, 2011, 133, 3780-3783.	13.7	223
96	Metal–Organic Framework Regioisomers Based on Bifunctional Ligands. Angewandte Chemie - International Edition, 2011, 50, 12193-12196.	13.8	57
97	Rhodium(NHC)-Catalyzed Amination of Aryl Bromides. Organic Letters, 2010, 12, 1640-1643.	4.6	76
98	Significant Selfâ€Acceleration Effects of Nitrile Additives in the Rhodium atalyzed Conversion of Aldoximes to Amides: A New Mechanistic Aspect. Advanced Synthesis and Catalysis, 2009, 351, 1807-1812.	4.3	82
99	Rhodium/Nâ€Heterocyclic Carbene Catalyzed Direct Intermolecular Arylation of sp ² and sp ³ CH Bonds with Chelation Assistance. Angewandte Chemie - International Edition, 2009, 48, 8935-8939.	13.8	145
100	Highly Efficient and Versatile Synthesis of Polyarylfluorenes via Pd-Catalyzed Câ^'H Bond Activation. Organic Letters, 2009, 11, 4588-4591.	4.6	72
101	Anhydrous Hydration of Nitriles to Amides using Aldoximes as the Water Source. Organic Letters, 2009, 11, 5598-5601.	4.6	79
102	Trimanganese Complexes Bearing Bidentate Nitrogen Ligands as a Highly Efficient Catalyst Precursor in the Epoxidation of Alkenesâ€. Journal of Organic Chemistry, 2006, 71, 6721-6727.	3.2	37
103	WO3Nanoparticles on MCM-48 as a Highly Selective and Versatile Heterogeneous Catalyst for the Oxidation of Olefins, Sulfides, and Cyclic Ketones. Organic Letters, 2005, 7, 5015-5018.	4.6	97
104	Use of Ruthenium/Alumina as a Convenient Catalyst for Copper-Free Sonogashira Coupling Reactions. Advanced Synthesis and Catalysis, 2004, 346, 1638-1640.	4.3	74
105	Differential ion dehydration energetics explains selectivity in the non-canonical lysosomal K+ channel TMEM175. ELife, 0, 11, .	6.0	9