Richard David Hayward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3214210/publications.pdf Version: 2024-02-01

ΡΙCHARD ΠΑΥΙΟ ΗΑΥΙΑΛΟΟ

#	Article	IF	CITATIONS
1	Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Molecular Microbiology, 2005, 56, 590-603.	1.2	139
2	Structure of a bacterial type III secretion system in contact with a host membrane in situ. Nature Communications, 2015, 6, 10114.	5.8	92
3	Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling. Nature Reviews Microbiology, 2006, 4, 358-370.	13.6	89
4	Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends in Cell Biology, 2002, 12, 15-20.	3.6	88
5	The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology. Cell Reports, 2019, 29, 187-201.e7.	2.9	82
6	Chlamydiae Assemble a Pathogen Synapse to Hijack the Host Endoplasmic Reticulum. Traffic, 2012, 13, 1612-1627.	1.3	78
7	Membrane fusion activity of purified SipB, aSalmonellasurface protein essential for mammalian cell invasion. Molecular Microbiology, 2000, 37, 727-739.	1.2	76
8	A <i>Chlamydia</i> effector recruits CEP170 to reprogram host microtubule organization. Journal of Cell Science, 2015, 128, 3420-34.	1.2	49
9	Pathogen–host reorganization during <scp> <i>C</i> </scp> <i>hlamydia</i> invasion revealed by cryoâ€electron tomography. Cellular Microbiology, 2014, 16, 1457-1472.	1.1	42
10	One Face of Chlamydia trachomatis: The Infectious Elementary Body. Current Topics in Microbiology and Immunology, 2016, 412, 35-58.	0.7	28
11	Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis. Microbes and Infection, 2015, 17, 727-731.	1.0	27
12	Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathogens, 2018, 14, e1007051.	2.1	27
13	Clustering transfers the translocated <i>Escherichia coli</i> receptor into lipid rafts to stimulate reversible activation of c-Fyn. Cellular Microbiology, 2009, 11, 433-441.	1.1	20
14	A Salmonella SipB-derived polypeptide blocks the â€~trigger' mechanism of bacterial entry into eukaryotic cells. Molecular Microbiology, 2002, 45, 1715-1727.	1.2	17
15	Membrane contact sites between pathogen-containing compartments and host organelles. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 895-899.	1.2	17
16	Penicillin Kills Chlamydia following the Fusion of Bacteria with Lysosomes and Prevents Genital Inflammatory Lesions in C. muridarum-Infected Mice. PLoS ONE, 2013, 8, e83511.	1.1	16
17	Making connections: snapshots of chlamydial type III secretion systems in contact with host membranes. Current Opinion in Microbiology, 2015, 23, 1-7.	2.3	12
18	Genome-wide profiling of humoral immunity and pathogen genes under selection identifies immune evasion tactics of Chlamydia trachomatis during ocular infection. Scientific Reports, 2017, 7, 9634.	1.6	12

#	Article	IF	CITATIONS
19	No better time to FRET: shedding light on host pathogen interactions. Journal of Biology, 2010, 9, 12.	2.7	10
20	Reply: Complex kinase requirements for EPEC pedestal formation. Nature Cell Biology, 2004, 6, 795-796.	4.6	9
21	A direct role for SNX9 in the biogenesis of filopodia. Journal of Cell Biology, 2020, 219, .	2.3	9
22	The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery. Scientific Reports, 2017, 7, 9450.	1.6	8
23	Pathogens reWritE Rho's Rules. Cell, 2006, 124, 15-17.	13.5	7
24	Profiling and validation of individual and patterns of Chlamydia trachomatis-specific antibody responses in trachomatous trichiasis. Parasites and Vectors, 2017, 10, 143.	1.0	3
25	Chlamydia Uses K+ Electrical Signalling to Orchestrate Host Sensing, Inter-Bacterial Communication and Differentiation. Microorganisms, 2021, 9, 173.	1.6	3