
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3213975/publications.pdf Version: 2024-02-01

 $\log M_{11}\tilde{\Delta} + 0.7$

#	Article	IF	CITATIONS
1	Elaboration and characterization of nanoemulsion with orange essential oil and pectin. Journal of the Science of Food and Agriculture, 2022, 102, 3543-3550.	3.5	5
2	Assessment of Fennel Oil Microfluidized Nanoemulsions Stabilization by Advanced Performance Xanthan Gum. Foods, 2021, 10, 693.	4.3	8
3	Preparation and characterization of emulgels loaded with sweet fennel oil. Journal of Dispersion Science and Technology, 2020, 41, 1381-1389.	2.4	2
4	Production of more sustainable emulsions formulated with eco-friendly materials. Journal of Cleaner Production, 2020, 243, 118661.	9.3	7
5	Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil. Journal of the Science of Food and Agriculture, 2020, 100, 1671-1677.	3.5	27
6	Improvement of the rheological properties of rosemary oil nanoemulsions prepared by microfluidization and vacuum evaporation. Journal of Industrial and Engineering Chemistry, 2020, 91, 340-346.	5.8	9
7	Processing and Formulation Optimization of Mandarin Essential Oil-Loaded Emulsions Developed by Microfluidization. Materials, 2020, 13, 3486.	2.9	13
8	Characterization of novel nanoemulsions, with improved properties, based on rosemary essential oil and biopolymers. Journal of the Science of Food and Agriculture, 2020, 100, 3886-3894.	3.5	9
9	Influence of a shear post-treatment on rheological properties, microstructure and physical stability of emulgels formed by rosemary essential oil and a fumed silica. Journal of Food Engineering, 2019, 241, 136-148.	5.2	16
10	Tackling slip effects in the nonlinear flow properties of gellan fluid gels. Journal of Applied Polymer Science, 2019, 136, 46900.	2.6	2
11	Effect of heating temperature of a novel wheat-derived surfactant on a mixture of thyme essential oil/surfactant and on the final emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123649.	4.7	2
12	A comparison of microfluidization and sonication to obtain lemongrass submicron emulsions. Effect of diutan gum concentration as stabilizer. LWT - Food Science and Technology, 2019, 114, 108424.	5.2	20
13	Formulation variables influencing the properties and physical stability of green multiple emulsions stabilized with a copolymer. Colloid and Polymer Science, 2019, 297, 1095-1104.	2.1	4
14	Development of emulgels formulated with sweet fennel oil and rhamsan gum, a biological macromolecule produced by Sphingomonas. International Journal of Biological Macromolecules, 2019, 129, 326-332.	7.5	7
15	Influence of the welan gum biopolymer concentration on the rheological properties, droplet size distribution and physical stability of thyme oil/W emulsions. International Journal of Biological Macromolecules, 2019, 133, 270-277.	7.5	25
16	Influence of the Homogenization Pressure on the Rheology of Biopolymer-Stabilized Emulsions Formulated with Thyme Oil. Fluids, 2019, 4, 29.	1.7	3
17	Production of food bioactive-loaded nanostructures by microfluidization. , 2019, , 341-390.		0
18	Linear and non-linear flow behavior of welan gum solutions. Rheologica Acta, 2019, 58, 1-8.	2.4	7

#	Article	IF	CITATIONS
19	Encapsulation of β-carotene in emulgels-based delivery systems formulated with sweet fennel oil. LWT - Food Science and Technology, 2019, 100, 189-195.	5.2	18
20	Development of rosemary essential oil nanoemulsions using a wheat biomass-derived surfactant. Colloids and Surfaces B: Biointerfaces, 2019, 173, 486-492.	5.0	29
21	Flow, dynamic viscoelastic and creep properties of a biological polymer produced by Sphingomonas sp. as affected by concentration. International Journal of Biological Macromolecules, 2019, 125, 1242-1247.	7.5	11
22	Effect of emulsifier HLB and stabilizer addition on the physical stability of thyme essential oil emulsions. Journal of Dispersion Science and Technology, 2018, 39, 1627-1634.	2.4	22
23	Development of food emulsions containing an advanced performance xanthan gum by microfluidization technique. Food Science and Technology International, 2018, 24, 373-381.	2.2	11
24	The Role of Processing Temperature in Flocculated Emulsions. Industrial & Engineering Chemistry Research, 2018, 57, 807-812.	3.7	9
25	Strategy for the development and characterization of environmental friendly emulsions by microfluidization technique. Journal of Cleaner Production, 2018, 178, 723-730.	9.3	22
26	Effects of ethoxylated fatty acid alkanolamide concentration and processing on d-limonene emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 198-203.	4.7	12
27	Rheological and microstructural properties of sepiolite gels. Influence of the addition of ionic surfactants. Journal of Industrial and Engineering Chemistry, 2018, 59, 1-7.	5.8	10
28	Rheology, microstructural characterization and physical stability of W/α-PINENE/W emulsions formulated with copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 125-132.	4.7	3
29	Injectable hydrogels based on pluronic/water systems filled with alginate microparticles: Rheological characterization. AIP Conference Proceedings, 2018, , .	0.4	0
30	Gellan gum fluid gels: influence of the nature and concentration of gel-promoting ions on rheological properties. Colloid and Polymer Science, 2018, 296, 1741-1748.	2.1	13
31	Influence of primary homogenization step on microfluidized emulsions formulated with thyme oil and Appyclean 6548. Journal of Industrial and Engineering Chemistry, 2018, 66, 203-208.	5.8	15
32	Time-dependent behavior in analyte-, temperature-, and shear-sensitive Pluronic PE9400/water systems. Colloid and Polymer Science, 2018, 296, 1515-1522.	2.1	4
33	Enhancing rosemary oil-in-water microfluidized nanoemulsion properties through formulation optimization by response surface methodology. LWT - Food Science and Technology, 2018, 97, 370-375.	5.2	34
34	Development and characterisation of a continuous phase based on a fumed silica and a green surfactant with emulsion applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 351-357.	4.7	10
35	Effect of temperature and shear on the microstructure of a microbial polysaccharide secreted by Sphingomonas species in aqueous solution. International Journal of Biological Macromolecules, 2018, 118, 2071-2075.	7.5	9
36	Optimization of Green Multiple Emulsions Processing to Improve Their Physical Stability. Chemical Engineering and Technology, 2017, 40, 1043-1050.	1.5	0

#	Article	IF	CITATIONS
37	Methodology to estimate the yield stress applied to ultraconcentrated detergents as model systems. Chemical Engineering Science, 2017, 166, 115-121.	3.8	13
38	Assessing differences between Ostwald ripening and coalescence by rheology, laser diffraction and multiple light scattering. Colloids and Surfaces B: Biointerfaces, 2017, 159, 405-411.	5.0	43
39	Physical stability of N,N-dimethyldecanamide \hat{l} ±-pinene-in-water emulsions as influenced by surfactant concentration. Colloids and Surfaces B: Biointerfaces, 2017, 149, 154-161.	5.0	2
40	Comparison of homogenization processes for the development of green O/W emulsions formulated with N,N-dimethyldecanamide. Journal of Industrial and Engineering Chemistry, 2017, 46, 54-61.	5.8	11
41	Development of eco-friendly emulsions produced by microfluidization technique. Journal of Industrial and Engineering Chemistry, 2016, 36, 90-95.	5.8	40
42	Rheological behavior of aqueous dispersions containing blends of rhamsan and welan polysaccharides with an eco-friendly surfactant. Colloids and Surfaces B: Biointerfaces, 2016, 145, 430-437.	5.0	10
43	Shearâ€Induced Structural Transitions in a Model Fabric Softener Containing an Esterquat Surfactant. Journal of Surfactants and Detergents, 2016, 19, 609-617.	2.1	9
44	Creep-recovery-creep tests to determine the yield stress of fluid gels containing gellan gum and Na+. Biochemical Engineering Journal, 2016, 114, 257-261.	3.6	14
45	Optimization of a green emulsion stability by tuning homogenization rate. RSC Advances, 2016, 6, 57563-57568.	3.6	24
46	Influence of Processing on the Physical Stability of Multiple Emulsions Containing a Green Solvent. Chemical Engineering and Technology, 2016, 39, 1137-1143.	1.5	7
47	A Further Step in the Development of Oil-in-Water Emulsions Formulated with a Mixture of Green Solvents. Industrial & Engineering Chemistry Research, 2016, 55, 7259-7266.	3.7	27
48	Development, rheological properties, and physical stability of <scp>d</scp> â€limoneneâ€inâ€water emulsions formulated with copolymers as emulsifiers. Journal of Applied Polymer Science, 2016, 133, .	2.6	7
49	Development and rheological properties of ecological emulsions formulated with a biosolvent and two microbial polysaccharides. Colloids and Surfaces B: Biointerfaces, 2016, 141, 53-58.	5.0	41
50	Rheology of sheared gels based on low acyl-gellan gum. Food Science and Technology International, 2016, 22, 325-332.	2.2	11
51	Influence of the concentration of a polyoxyethylene glycerol ester on the physical stability of submicron emulsions. Chemical Engineering Research and Design, 2015, 100, 261-267.	5.6	14
52	Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene. Colloids and Surfaces B: Biointerfaces, 2015, 128, 127-131.	5.0	46
53	Yield stress and onset of nonlinear time-dependent rheological behaviour of gellan fluid gels. Journal of Food Engineering, 2015, 159, 42-47.	5.2	24
54	Controlled production of eco-friendly emulsions using direct and premix membrane emulsification. Chemical Engineering Research and Design, 2015, 98, 59-69.	5.6	28

#	Article	IF	CITATIONS
55	Influence of the ratio of amphiphilic copolymers used as emulsifiers on the microstructure, physical stability and rheology of α-pinene emulsions stabilized with gellan gum. Colloids and Surfaces B: Biointerfaces, 2015, 135, 465-471.	5.0	15
56	Nonlinear and linear viscoelastic properties of a novel type of xanthan gum with industrial applications. Rheologica Acta, 2015, 54, 993-1001.	2.4	28
57	Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum. Food Hydrocolloids, 2015, 44, 109-114.	10.7	48
58	Rheological properties and physical stability of ecological emulsions stabilized by a surfactant derived from cocoa oil and high pressure homogenization. Grasas Y Aceites, 2015, 66, e087.	0.9	12
59	Adsorption at the biocompatible α-pinene–water interface and emulsifying properties of two eco-friendly surfactants. Colloids and Surfaces B: Biointerfaces, 2014, 122, 623-629.	5.0	27
60	Development of eco-friendly submicron emulsions stabilized by a bio-derived gum. Colloids and Surfaces B: Biointerfaces, 2014, 123, 797-802.	5.0	12
61	Physical characterization of multiple emulsions formulated with a green solvent and different HLB block copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458, 40-47.	4.7	11
62	Large amplitude oscillatory shear of xanthan gum solutions. Effect of sodium chloride (NaCl) concentration. Journal of Food Engineering, 2014, 126, 165-172.	5.2	53
63	Influence of polysaccharides on the rheology and stabilization of α-pinene emulsions. Carbohydrate Polymers, 2014, 105, 177-183.	10.2	51
64	Surface and foaming properties of polyoxyethylene glycerol ester surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458, 195-202.	4.7	22
65	Physicochemical and rheological characterization of Prosopis juliflora seed gum aqueous dispersions. Food Hydrocolloids, 2014, 35, 348-357.	10.7	70
66	Interfacial characterization of Pluronic PE9400 at biocompatible (air–water and limonene–water) interfaces. Colloids and Surfaces B: Biointerfaces, 2013, 111, 171-178.	5.0	30
67	Surface properties and bulk rheology of Sterculia apetala gum exudate dispersions. Food Hydrocolloids, 2013, 32, 440-446.	10.7	21
68	Influence of chitosan concentration on the stability, microstructure and rheological properties of O/W emulsions formulated with high-oleic sunflower oilÂand potato protein. Food Hydrocolloids, 2013, 30, 152-162.	10.7	109
69	Efecto del pH en emulsiones o/w formuladas con proteÃna de patata y quitosano. Grasas Y Aceites, 2013, 64, 15-21.	0.9	4
70	Physical Characterization of a Commercial Suspoemulsion as a Reference for the Development of Suspoemulsions. Chemical Engineering and Technology, 2013, 36, 1883-1890.	1.5	25
71	Effect of Pectin, Starch, and Locust Bean Gum on the Interfacial Activity of Monostearin and Î²â€Łactoglobulin. Journal of Food Science, 2012, 77, C353-8.	3.1	2
72	Interfacial rheology and conformations of triblock copolymers adsorbed onto the water–oil interface. Journal of Colloid and Interface Science, 2012, 378, 135-143.	9.4	38

#	Article	IF	CITATIONS
73	Dynamic interfacial tension of triblock copolymers solutions at the water–hexane interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 391, 119-124.	4.7	23
74	Rheological and Microstructural Behavior of a Model Concentrated Fabric Softener. Chemical Engineering and Technology, 2011, 34, 1473-1480.	1.5	3
75	Equilibrium and surface rheology of two polyoxyethylene surfactants (CiEOj) differing in the number of oxyethylene groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 130-135.	4.7	24
76	Influence of gellan gum concentration on the dynamic viscoelasticity and transient flow of fluid gels. Biochemical Engineering Journal, 2011, 55, 73-81.	3.6	53
77	Flow behaviour, linear viscoelasticity and surface properties of chitosan aqueous solutions. Food Hydrocolloids, 2010, 24, 659-666.	10.7	74
78	Rheological Behavior and Structure of a Commercial Esterquat Surfactant Aqueous System. Chemical Engineering and Technology, 2010, 33, 481-488.	1.5	18
79	Rheological properties of Cedrela odorata gum exudate aqueous dispersions. Food Hydrocolloids, 2009, 23, 1031-1037.	10.7	46
80	Surface tension and rheology of aqueous dispersed systems containing a new hydrophobically modified polymer and surfactants. International Journal of Pharmaceutics, 2008, 347, 45-53.	5.2	11
81	Rheological properties and surface tension of Acacia tortuosa gum exudate aqueous dispersions. Carbohydrate Polymers, 2007, 70, 198-205.	10.2	43
82	Influence of xanthan gum and locust bean gum upon flow and thixotropic behaviour of food emulsions containing modified starch. Journal of Food Engineering, 2007, 81, 179-186.	5.2	78
83	Progress in emulsion formulation. Grasas Y Aceites, 2007, 58, .	0.9	5
84	Thermogelation properties of methylcellulose (MC) and their effect on a batter formula. Food Hydrocolloids, 2005, 19, 141-147.	10.7	68
85	Influence of ingredients on the thermo-rheological behaviour of batters containing methylcellulose. Food Hydrocolloids, 2005, 19, 869-877.	10.7	37
86	Influence of thermal treatment on the flow of starch-based food emulsions. European Food Research and Technology, 2003, 217, 17-22.	3.3	10
87	Role of Hydrocolloids in the Creaming of Oil in Water Emulsions. Journal of Agricultural and Food Chemistry, 2003, 51, 265-269.	5.2	60
88	Rheological behaviour of spray-dried egg yolk/xanthan gum aqueous dispersions. Rheologica Acta, 2001, 40, 162-175.	2.4	15
89	Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacteriumAnabaena sp. ATCC 33047. Biotechnology and Bioengineering, 2000, 67, 283-290.	3.3	75
90	Dynamic Viscoelasticity and Flow Behavior of a Polyoxyethylene Glycol Nonylphenyl Ether/Toluene/Water System. Langmuir, 2000, 16, 4711-4719.	3.5	44

#	Article	IF	CITATIONS
91	Linear Viscoelasticity of the Direct Hexagonal Liquid Crystalline Phase for a Heptane/Nonionic Surfactant/Water System. Journal of Colloid and Interface Science, 1997, 187, 401-417.	9.4	55
92	Flow behaviour and stability of light mayonnaise containing a mixture of egg yolk and sucrose stearate as emulsifiers. Food Hydrocolloids, 1995, 9, 111-121.	10.7	57
93	Transient and Steady Flow of a Lamellar Liquid-Crystalline Surfactant/Water System. Langmuir, 1995, 11, 669-673.	3.5	27
94	Influence of surfactant concentration and temperature on the flow behaviour of sucrose oleate aqueous systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 82, 59-69.	4.7	9
95	FLOW BEHAVIOUR AND STABILITY OF OIL-IN-WATER EMULSIONS STABILIZED BY A SUCROSE PALMITATE. Journal of Texture Studies, 1994, 25, 331-348.	2.5	23
96	Temperature dependence of viscosity for sucrose laurate/water micellar systems. Colloid and Polymer Science, 1993, 271, 600-606.	2.1	19
97	Flow behavior of sucrose stearate/water systems. JAOCS, Journal of the American Oil Chemists' Society, 1992, 69, 660-666.	1.9	28