
W Michael Griffin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3213829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Life-Cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation. Environmental Science & Technology, 2007, 41, 6290-6296.	4.6	286
2	ECOLOGY: Managing Soil Carbon. Science, 2004, 304, 393-393.	6.0	279
3	Life cycle greenhouse gas emissions of Marcellus shale gas. Environmental Research Letters, 2011, 6, 034014.	2.2	250
4	Can Brazil replace 5% of the 2025 gasoline world demand with ethanol?. Energy, 2009, 34, 655-661.	4.5	170
5	Life Cycle Inventory of CO ₂ in an Enhanced Oil Recovery System. Environmental Science & Technology, 2009, 43, 8027-8032.	4.6	120
6	Policy Implications of Uncertainty in Modeled Life-Cycle Greenhouse Gas Emissions of Biofuels. Environmental Science & Technology, 2011, 45, 132-138.	4.6	103
7	Uncertainty in Life Cycle Greenhouse Gas Emissions from United States Natural Gas End-Uses and its Effects on Policy. Environmental Science & Technology, 2011, 45, 8182-8189.	4.6	103
8	Impact of Biofuel Crop Production on the Formation of Hypoxia in the Gulf of Mexico. Environmental Science & Technology, 2009, 43, 7985-7991.	4.6	90
9	Uncertainty Analysis of Life Cycle Greenhouse Gas Emissions from Petroleum-Based Fuels and Impacts on Low Carbon Fuel Policies. Environmental Science & amp; Technology, 2011, 45, 125-131.	4.6	82
10	Modeling Switchgrass Derived Cellulosic Ethanol Distribution in the United States. Environmental Science & Technology, 2006, 40, 2877-2886.	4.6	71
11	Natural Gas Fugitive Emissions Rates Constrained by Global Atmospheric Methane and Ethane. Environmental Science & Technology, 2014, 48, 7714-7722.	4.6	71
12	Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT Liquid Fuels from Coal and Natural Gas. Environmental Science & Technology, 2008, 42, 7559-7565.	4.6	70
13	Life Cycle Greenhouse Gas Emissions From U.S. Liquefied Natural Gas Exports: Implications for End Uses. Environmental Science & Technology, 2015, 49, 3237-3245.	4.6	69
14	Impacts of facility size and location decisions on ethanol production cost. Energy Policy, 2011, 39, 47-56.	4.2	68
15	Isolation and characterization of a surfactant produced byBacillus licheniformis 86. Journal of Industrial Microbiology, 1990, 6, 243-248.	0.9	67
16	Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security. Energy Policy, 2011, 39, 2615-2625.	4.2	63
17	The climate and health effects of a USA switch from coal to gas electricity generation. Energy, 2016, 109, 1160-1166.	4.5	61
18	Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use. Current Opinion in Biotechnology, 2016, 38, 63-70.	3.3	59

W MICHAEL GRIFFIN

#	Article	IF	CITATIONS
19	Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of Three Biobased Polymer Families. Environmental Science & Technology, 2016, 50, 2846-2858.	4.6	58
20	Structural analysis ofBacillus licheniformis 86 surfactant. Journal of Industrial Microbiology, 1991, 7, 45-52.	0.9	52
21	Analysis of life-cycle GHG emissions for iron ore mining and processing in China—Uncertainty and trends. Resources Policy, 2018, 58, 90-96.	4.2	47
22	Uncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal. Energy & Fuels, 2012, 26, 4917-4923.	2.5	43
23	Relevance of Emissions Timing in Biofuel Greenhouse Gases and Climate Impacts. Environmental Science & Technology, 2011, 45, 8197-8203.	4.6	40
24	Global Bottom-Up Fossil Fuel Fugitive Methane and Ethane Emissions Inventory for Atmospheric Modeling. ACS Sustainable Chemistry and Engineering, 2014, 2, 1992-2001.	3.2	40
25	Economic and Environmental Transportation Effects of Large-Scale Ethanol Production and Distribution in the United States. Environmental Science & Technology, 2009, 43, 2228-2233.	4.6	39
26	lmplications of changing natural gas prices in the United States electricity sector for SO ₂ , NO _{<i>X</i>} and life cycle GHG emissions. Environmental Research Letters, 2012, 7, 034018.	2.2	38
27	Inventory Development and Input-Output Model of U.S. Land Use: Relating Land in Production to Consumption. Environmental Science & amp; Technology, 2011, 45, 4937-4943.	4.6	37
28	Changing the Renewable Fuel Standard to a Renewable Material Standard: Bioethylene Case Study. Environmental Science & Technology, 2015, 49, 93-102.	4.6	37
29	Availability of Biomass Residues for Co-Firing in Peninsular Malaysia: Implications for Cost and GHG Emissions in the Electricity Sector. Energies, 2014, 7, 804-823.	1.6	36
30	Decarbonizing US passenger vehicle transport under electrification and automation uncertainty has a travel budget. Environmental Research Letters, 2020, 15, 0940c2.	2.2	35
31	Implications of Near-Term Coal Power Plant Retirement for SO ₂ and NO _X and Life Cycle GHG Emissions. Environmental Science & Technology, 2012, 46, 9838-9845.	4.6	34
32	Assessment of policies to reduce core forest fragmentation from Marcellus shale development in Pennsylvania. Ecological Indicators, 2015, 52, 153-160.	2.6	33
33	The environmental competitiveness of small modular reactors: A life cycle study. Energy, 2016, 114, 84-99.	4.5	31
34	Alternative transport fuels for the future. International Journal of Vehicle Design, 2004, 35, 27.	0.1	27
35	Representing and visualizing data uncertainty in input-output life cycle assessment models. Resources, Conservation and Recycling, 2018, 137, 316-325.	5.3	21
36	Addressing uncertainty in life-cycle carbon intensity in a national low-carbon fuel standard. Energy Policy, 2013, 56, 41-50.	4.2	20

W MICHAEL GRIFFIN

#	Article	IF	CITATIONS
37	Impact of dedicated E85 vehicle use on ozone and particulate matter in the US. Atmospheric Environment, 2011, 45, 7330-7340.	1.9	18
38	Alternative Transportation Fuels: Distribution Infrastructure for Hydrogen and Ethanol in Iowa. Journal of Infrastructure Systems, 2008, 14, 262-271.	1.0	15
39	Lung Cancer Risk from Radon in Marcellus Shale Gas in Northeast U.S. Homes. Risk Analysis, 2016, 36, 2105-2119.	1.5	13
40	Estimating national costs, benefits, and potential for cellulosic ethanol production from forest thinnings. Biomass and Bioenergy, 2011, 35, 2133-2142.	2.9	12
41	Life cycle consumptive water use for oil shale development and implications for water supply in the Colorado River Basin. International Journal of Life Cycle Assessment, 2014, 19, 677-687.	2.2	11
42	National-Level Infrastructure and Economic Effects of Switchgrass Cofiring with Coal in Existing Power Plants for Carbon Mitigation. Environmental Science & Technology, 2008, 42, 3501-3507.	4.6	9
43	Indirect land use change and biofuel policy. Environmental Research Letters, 2009, 4, 034008.	2.2	6
44	Environmental Aspects of Biotechnology. Advances in Biochemical Engineering/Biotechnology, 2019, 173, 77-119.	0.6	5
45	State-Level Infrastructure and Economic Effects of Switchgrass Cofiring with Coal in Existing Power Plants for Carbon Mitigation. Environmental Science & amp; Technology, 2007, 41, 6657-6662.	4.6	4
46	Effect of crude oil carbon accounting decisions on meeting global climate budgets. Environment Systems and Decisions, 2017, 37, 261-275.	1.9	2
47	Impacts of Variability in Cellulosic Biomass Yields on Energy Security. Environmental Science & Technology, 2014, 48, 7215-7221.	4.6	1
48	Refueling and Infrastructure Costs of Expanding Access to E85 in Pennsylvania. Journal of Infrastructure Systems, 2018, 24, 04017045.	1.0	1
49	Greenhouse Gas Estimates of LNG Exports Must Include Global Market Effects. Environmental Science & Technology, 2022, 56, 1194-1201.	4.6	1