Srihari Pabbaraja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3213464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iodine-catalyzed C- and O-nucleophilic substitution reactions of aryl-propargyl methanols. Tetrahedron Letters, 2007, 48, 8120-8124.	1.4	66
2	Pyrazolo-benzothiazole hybrids: Synthesis, anticancer properties and evaluation of antiangiogenic activity using inÂvitro VEGFR-2 kinase and inÂvivo transgenic zebrafish model. European Journal of Medicinal Chemistry, 2019, 182, 111609.	5.5	65
3	Versatile Route to Benzoannulated Medium-Ring Carbocycles via Aryne Insertion into Cyclic 1,3-Diketones: Application to a Synthesis of Radermachol. Organic Letters, 2016, 18, 2832-2835.	4.6	63
4	Scandium Triflate Catalyzed Allylation of Acetals and <i>gem</i> -Diacetates: A Facile Synthesis of Homoallyl Ethers and Acetates. Synlett, 2001, 2001, 0673-0675.	1.8	62
5	A concise stereoselective total synthesis of (+)-artemisinin. Tetrahedron, 2010, 66, 2005-2009.	1.9	61
6	Niobium(V) pentachloride: an efficient catalyst for C-, N-, O-, and S-nucleophilic substitution reactions of benzylic alcohols. Tetrahedron Letters, 2007, 48, 8306-8310.	1.4	58
7	Formal Total Synthesis of Cyanolide A. Journal of Organic Chemistry, 2011, 76, 1922-1925.	3.2	51
8	Solvent free synthesis of 1,5-disubstituted tetrazoles derived from Baylis Hillman acetates as potential TNF-α inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5569-5572.	2.2	50
9	4 β -amidotriazole linked podophyllotoxin congeners: DNA topoisomerase-Ilα inhibition and potential anticancer agents for prostate cancer. European Journal of Medicinal Chemistry, 2018, 144, 595-611.	5.5	50
10	Trans- and cis-stilbene polyphenols induced rapid perinuclear mitochondrial clustering and p53-independent apoptosis in cancer cells but not normal cells. European Journal of Pharmacology, 2008, 587, 25-34.	3.5	47
11	A General Carbazole Synthesis via Stitching of Indole–Ynones with Nitromethanes: Application to Total Synthesis of Carbazomycin A, Calothrixin B, and Staurosporinone. Organic Letters, 2019, 21, 3372-3376.	4.6	46
12	Formal total synthesis of (â^')-salicylihalamides A and B. Tetrahedron: Asymmetry, 2004, 15, 81-89.	1.8	45
13	Multiple Aryne Insertions into Oxindoles: Synthesis of Bioactive 3,3-Diarylated Oxindoles and Dibenzo[<i>b</i> , <i>e</i>]azepin-6-ones. Organic Letters, 2016, 18, 6184-6187.	4.6	44
14	Nitromethane as a Carbanion Source for Domino Benzoannulation with Ynones: Oneâ€Pot Synthesis of Polyfunctional Naphthalenes and a Total Synthesis of Macarpine. Angewandte Chemie - International Edition, 2018, 57, 16847-16851.	13.8	44
15	lodine-Catalyzed Nucleophilic Substitution Reactions of Benzylic Alcohols. Synlett, 2008, 2008, 1045-1049.	1.8	43
16	Stereoselective total synthesis of paecilomycin E. Tetrahedron Letters, 2012, 53, 56-58.	1.4	43
17	Formation of Substituted Tetrahydropyrans through Oxetane Ring Opening: Application to the Synthesis of C1–C17 Fragment of Salinomycin. Organic Letters, 2014, 16, 836-839.	4.6	43
18	One-pot three-component coupling reaction: solvent-free synthesis of novel 3-substituted indoles catalyzed by PMA–SiO2. Tetrahedron Letters, 2009, 50, 3763-3766.	1.4	42

#	Article	IF	CITATIONS
19	Stereodivergent Total Synthesis of (+)â€Aspergillide B and (+)â€7â€ <i>epi</i> â€Aspergillide A. European Journal of Organic Chemistry, 2013, 2013, 578-587.	2.4	42
20	A novel natural product inspired scaffold with robust neurotrophic, neurogenic and neuroprotective action. Scientific Reports, 2015, 5, 14134.	3.3	42
21	Spiroannulation of Oxindoles via Aryne and Alkyne Incorporation: Substituent-Diverted, Transition-Metal-Free, One-Pot Access to Spirooxindoles. Organic Letters, 2017, 19, 3119-3122.	4.6	42
22	Solvent-free NbCl5 catalyzed condensation of 1,3-dicarbonyl compounds and aldehydes: a facile synthesis of trisubstituted alkenes. Tetrahedron Letters, 2009, 50, 2470-2473.	1.4	41
23	aza-Flavanones as potent cross-species microRNA inhibitors that arrest cell cycle. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 645-648.	2.2	41
24	Scandium triflate-catalyzed 1,3-dipolar cycloaddition of aziridines with alkenes. Tetrahedron Letters, 2001, 42, 9089-9092.	1.4	39
25	Synthesis and evaluation of a novel quinoline-triazole analogs for antitubercular properties via molecular hybridization approach. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126671.	2.2	39
26	An aldol approach to the synthesis of the anti-tubercular agent erogorgiaene. Tetrahedron Letters, 2007, 48, 2841-2843.	1.4	38
27	A carbohydrate approach for the synthesis of tetrahydropyran containing C16–C29 fragment of sorangicin A. Tetrahedron, 2009, 65, 6304-6309.	1.9	38
28	Total Synthesis of Both Enantiomers of Macrocyclic Lactone Aspergillide C. European Journal of Organic Chemistry, 2011, 2011, 6690-6697.	2.4	37
29	A facile and chemoselective conjugate reduction using polymethylhydrosiloxane (PMHS) and catalytic B(C6F5)3. Organic and Biomolecular Chemistry, 2006, 4, 1650.	2.8	35
30	First stereoselective total synthesis of (â~')-stagonolide A. Tetrahedron: Asymmetry, 2010, 21, 106-111.	1.8	35
31	Stitching Oxindoles and Ynones in a Domino Process: Access to Spirooxindoles and Application to a Short Synthesis of Spindomycin B. Organic Letters, 2017, 19, 6152-6155.	4.6	32
32	Short Route to Platencin. Organic Letters, 2013, 15, 3782-3785.	4.6	30
33	A convergent approach for the total synthesis of (â^')-synrotolide diacetate. Tetrahedron Letters, 2007, 48, 6977-6981.	1.4	29
34	Synthesis of 1,8-dioxo-octahydroxanthenes utilizing PMA-SiO2 as an efficient reusable catalyst. Chinese Chemical Letters, 2008, 19, 771-774.	9.0	29
35	A Concise Stereoselective Total Synthesis of Herbarumin III. Synthesis, 2008, 2008, 1938-1942.	2.3	29
36	Stereoselective Total Synthesis of (+)-Oploxyne A, (â^')-Oploxyne B, and Their C-10 Epimers and Structure Revision of Natural Oploxyne B. Journal of Organic Chemistry, 2011, 76, 2568-2576.	3.2	29

#	Article	IF	CITATIONS
37	Access to 2-Alkyl/Aryl-4-(1 <i>H</i>)-Quinolones via Orthogonal "NH ₃ ―Insertion into <i>o</i> -Haloaryl Ynones: Total Synthesis of Bioactive Pseudanes, Graveoline, Graveolinine, and Waltherione F. Organic Letters, 2020, 22, 1575-1579.	4.6	27
38	PMA-Silica Gel Catalyzed Propargylation of Aromatic Compounds with Arylpropargyl Alcohols under Solvent-Free Conditions. Synthesis, 2008, 2008, 1853-1860.	2.3	26
39	Stereoselective total synthesis of achaetolide and reconfirmation of its absolute configuration. Tetrahedron Letters, 2010, 51, 6174-6176.	1.4	25
40	First stereoselective total synthesis of (+)-dodoneine. Tetrahedron Letters, 2008, 49, 5590-5592.	1.4	24
41	First stereoselective total synthesis of stagonolide G. Tetrahedron Letters, 2010, 51, 2903-2905.	1.4	24
42	Stereoselective Total Synthesis of iso-Cladospolide B. Synthesis, 2006, 2006, 4041-4045.	2.3	23
43	NbCl5 mediated deprotection of methoxy methyl ether. Tetrahedron Letters, 2009, 50, 4318-4320.	1.4	23
44	A Carbohydrate Approach for the First Total Synthesis of Cochliomycin C: Stereoselective Total Synthesis of Paecilomycin E, Paecilomycin F and 6′â€ <i>epi</i> â€Cochliomycin C. European Journal of Organic Chemistry, 2015, 2015, 3983-3993.	2.4	23
45	Synthesis and Kinetic Analysis of theN-Acetylhexosaminidase Inhibitor XylNAc-Isofagomine. Journal of Organic Chemistry, 2005, 70, 7715-7720.	3.2	22
46	Stereoselective total synthesis of synparvolide B and epi-synparvolide A. Tetrahedron Letters, 2009, 50, 2420-2424.	1.4	22
47	Synthesis of a key intermediate for the total synthesis of pseudopteroxazole. Tetrahedron, 2010, 66, 1997-2004.	1.9	22
48	Total synthesis of (+)-varitriol and (+)-6′-epi-varitriol. Tetrahedron, 2012, 68, 1540-1546.	1.9	22
49	Tris(pentafluorophenyl)borane-Catalyzed Synthesis of N-Benzyl Pyrrolidines. Synthesis, 2006, 2006, 2646-2648.	2.3	21
50	Zinc mediated propenylation of Baylis–Hillman acetates. Tetrahedron Letters, 2007, 48, 5999-6001.	1.4	21
51	The Stereoselective Total Synthesis of (+)-Stagonolide B. Synthesis, 2010, 2010, 1039-1045.	2.3	21
52	Stereoselective Total Synthesis of (+)-Virol C. Synthesis, 2003, 2003, 2699-2704.	2.3	20
53	PMAâ€5iO2: A Heterogenous Catalyst for Oâ€, Sâ€, and Nâ€Nucleophilic Substitution Reactions of Aryl Propargyl Alcohols. Synthetic Communications, 2008, 38, 1448-1455.	2.1	20
54	A Stereoselective Aldol Approach for the Total Synthesis of Herbarumin I and Stagonolide A. Synthesis, 2010, 2010, 2407-2412.	2.3	20

#	Article	lF	CITATIONS
55	Diverted organic synthesis (DOS): accessing a new, natural product inspired, neurotrophically active scaffold through an intramolecular Pauson–Khand reaction. Organic and Biomolecular Chemistry, 2012, 10, 6830.	2.8	20
56	Ultrasound-Promoted Deoxygenation of Sulphoxides by Samarium - NH4Cl. Synlett, 2001, 2001, 0854-0856.	1.8	19
57	Stereoselective total synthesis of (+)-sapinofuranone B. Tetrahedron, 2011, 67, 4620-4627.	1.9	19
58	Synthesis of Readily Accessible Triazole-Linked Dimer Deoxynucleoside Phosphoramidite for Solid-Phase Oligonucleotide Synthesis. Synthesis, 2010, 2010, 3710-3714.	2.3	18
59	An enantiodivergent formal synthesis of paecilomycine A. Tetrahedron Letters, 2012, 53, 829-832.	1.4	18
60	A facile chiral pool synthesis of 9-epi-decarestrictine-D, decarestrictine-D and O. Tetrahedron: Asymmetry, 2014, 25, 203-211.	1.8	18
61	An Integrated Continuous Flow Micro-Total Ultrafast Process System (μ-TUFPS) for the Synthesis of Celecoxib and Other Cyclooxygenase Inhibitors. Organic Process Research and Development, 2019, 23, 1892-1899.	2.7	18
62	Stereoselective total synthesis of (+)-polyrhacitide A. Tetrahedron Letters, 2010, 51, 2154-2156.	1.4	17
63	Total Synthesis of Nhatrangin A. Journal of Organic Chemistry, 2013, 78, 8524-8530.	3.2	17
64	Micro-electro-flow reactor (μ-EFR) system for ultra-fast arene synthesis and manufacture of daclatasvir. Chemical Communications, 2019, 55, 11852-11855.	4.1	17
65	New and practical synthesis of 1,4-dihydrobenzopyrano-pyrazoles. Tetrahedron Letters, 2001, 42, 6599-6601.	1.4	16
66	From vinyl pyranoses to carbasugars by an iron-catalyzed reaction complementary to classical Ferrier carbocyclization. Chemical Communications, 2009, , 4717.	4.1	16
67	Stereoselective Total Synthesis of (+)-Sapinofuranone B. Synlett, 2010, 2010, 2636-2638.	1.8	16
68	Model studies towards paecilomycine A–C: exploring scaffold diversity through a key intramolecular Pauson–Khand reaction. Tetrahedron Letters, 2011, 52, 1663-1666.	1.4	16
69	A stereoselective approach for the southeast segment (C1–C16) of (+)-sorangicin A. Organic and Biomolecular Chemistry, 2013, 11, 4640.	2.8	16
70	Stereoselective Total Synthesis of the Marine Macrolide Sanctolide A. European Journal of Organic Chemistry, 2015, 2015, 5856-5863.	2.4	16
71	A Facile Nucleophilic Displacement of Baylis-Hillman Acetates with AmmoniumÂ-Thiocyanate. Synthesis, 2006, 2006, 2772-2776.	2.3	15
72	Formal Total Synthesis of Ovalcin by Carbohydrate Approach. Synlett, 2007, 2007, 0992-0994.	1.8	15

#	Article	IF	CITATIONS
73	Facile synthesis of α-iodo carbonyl compounds and α-iodo dimethyl ketals using molecular iodine and trimethylorthoformate. Tetrahedron Letters, 2008, 49, 3810-3813.	1.4	15
74	A unified strategy for the synthesis of the C1–C14 fragment of marinolic acids, mupirocins, pseudomonic acids and thiomarinols: total synthesis of pseudomonic acid methyl monate C. Organic and Biomolecular Chemistry, 2014, 12, 2950.	2.8	15
75	Safe and Convenient Reduction of Δ2-Isoxazolines with PMHS-Pd(OH)2/C. Synlett, 2004, 2004, 1303-1305.	1.8	14
76	A facile approach to the synthesis of securinega alkaloids: stereoselective total synthesis of (â^')-allonorsecurinine. Tetrahedron Letters, 2012, 53, 5926-5928.	1.4	14
77	Tandem Michael– <i>anti</i> -Michael Addition-Mediated Orthogonal Strapping of Diynones: Regioselective Spirocyclopentannulation of Oxindoles and Pyrazolones and DFT Validation. Journal of Organic Chemistry, 2022, 87, 884-891.	3.2	14
78	A catalytic approach for the synthesis of allylic azides from aryl vinyl carbinols. Tetrahedron Letters, 2013, 54, 2382-2385.	1.4	13
79	Expedient Synthesis of Largeâ€Ring <i>trans</i> â€Enamide Macrolides by Culâ€Mediated Intramolecular Coupling of Vinyl Iodide with Amide: Total Synthesis of Palmyrolide A. European Journal of Organic Chemistry, 2016, 2016, 2509-2513.	2.4	13
80	A conventional approach to the total synthesis of (â^')-varitriol. Tetrahedron: Asymmetry, 2012, 23, 1584-1587.	1.8	12
81	A carbohydrate approach for the formal total synthesis of (â^')-aspergillide C. Beilstein Journal of Organic Chemistry, 2014, 10, 3122-3126.	2.2	12
82	Studies towards the total synthesis of cruentaren A and B: Stereoselective synthesis of fragments C1-C11, C12-C22 and C23-C28. Tetrahedron Letters, 2017, 58, 2685-2689.	1.4	12
83	First Concise Total Synthesis of 5â€Epiâ€prelactone B. Synthetic Communications, 2008, 38, 1389-1397.	2.1	11
84	A Facile Synthesis of Pyrazolines from Baylis–Hillman Adducts. Chemistry Letters, 2008, 37, 624-625.	1.3	11
85	Total synthesis of (±)-elegansidiol, (±)-farnesiferol B, and (±)-farnesiferol D. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3814-3817.	2.2	11
86	First total synthesis of neurotrophic diacetylene tetrol (â^')-petrosiol D. Tetrahedron Letters, 2013, 54, 6370-6372.	1.4	11
87	Integrated continuous flow/batch protocol for the photoreduction of <i>ortho</i> -methyl phenyl ketones using water as the hydrogen source. Reaction Chemistry and Engineering, 2019, 4, 812-817.	3.7	11
88	First total synthesis and structure confirmation of diacetylenic polyol (+)-oploxyne B. Tetrahedron Letters, 2013, 54, 5616-5618.	1.4	10
89	A 2-oxa-spiro[5.4]decane scaffold displays neurotrophic, neurogenic and anti-neuroinflammatory activities with high potential for development as a versatile CNS therapeutic. Scientific Reports, 2017, 7, 1492.	3.3	10
90	PMA-SiO2 catalyzed synthesis of indolo[2,3-c]quinolines as potent anti cancer agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2360-2365.	2.2	9

Srihari Pabbaraja

#	Article	IF	CITATIONS
91	An expedient total synthesis of mupirocin H. RSC Advances, 2014, 4, 37629.	3.6	8
92	A facile approach for the total synthesis of neurotrophic diyne tetraol petrosiol A and petrosiol E. Tetrahedron, 2016, 72, 5807-5817.	1.9	8
93	Integrated Microfluidic Photo-Flow Process (μ-PFP) for Direct Upconversion of Exhaust Gas to Value-Added Chemicals. ACS Sustainable Chemistry and Engineering, 2019, 7, 19605-19611.	6.7	8
94	Phenyl Sulphonyl Acetaldehyde Diethyl Acetal: A New Robust 1,2-Diol Protective Group. Synthetic Communications, 2003, 33, 895-902.	2.1	7
95	Zinc-mediated alkynylation of carbonyl compounds with iodoalkynes: a facile synthesis of propargyl alcohols. Tetrahedron Letters, 2008, 49, 7132-7134.	1.4	7
96	A facile approach for the synthesis of C13–C24 fragments of maltepolides A, C and D. Organic and Biomolecular Chemistry, 2016, 14, 9629-9638.	2.8	7
97	Stereoselective total synthesis of palmyrolide A via intramolecular trans N-methyl enamide formation. Tetrahedron Letters, 2016, 57, 4456-4459.	1.4	7
98	Stereoselective total synthesis and structural revision of the diacetylenic diol natural products strongylodiols H and I. Beilstein Journal of Organic Chemistry, 2018, 14, 2313-2320.	2.2	7
99	Benzannulation of arynes with dimethylacetonedicarboxylates via an insertion-fragmentation-Dieckman-aromatization cascade: Expeditious entry to naphthoresorcinols and binaphthoresorcinols. Tetrahedron, 2019, 75, 2923-2932.	1.9	7
100	Integrated multi-step continuous flow synthesis of daclatasvir without intermediate purification and solvent exchange. Reaction Chemistry and Engineering, 2020, 5, 2109-2114.	3.7	7
101	Identification and characterization of forced degradation products of vortioxetine by LC/MS/MS and NMR. Journal of Pharmaceutical and Biomedical Analysis, 2020, 188, 113442.	2.8	7
102	Stitching Ynones with Nitromethanes: Domino Synthesis of Functionally Enriched Benzofurans and Benzothiophenes. Journal of Organic Chemistry, 2021, 86, 12093-12106.	3.2	7
103	A carbohydrate approach for the formal total synthesis of the prostacyclin analogue (16S)-iloprost. Tetrahedron: Asymmetry, 2012, 23, 388-394.	1.8	6
104	A convergent approach for the total synthesis of the α-glucosidase inhibitor (â^')-panaxjapyne-C. Tetrahedron: Asymmetry, 2013, 24, 1524-1530.	1.8	6
105	Electricity-induced micro-flow C–H/N–H alkyne annulation: a greener approach to access heteroaromatic compounds. Reaction Chemistry and Engineering, 2021, 6, 1801-1805.	3.7	6
106	Regioselective C-3-alkylation of quinoxalin-2(1 <i>H</i>)-ones <i>via</i> C–N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis. RSC Advances, 2022, 12, 12235-12241.	3.6	6
107	PMA-SiO2 catalyzed synthesis of β-keto enol ethers. Chinese Chemical Letters, 2008, 19, 767-770.	9.0	5
108	First stereoselective total synthesis and reconfirmation of absolute structure of nonenolide (â^')-stagonolide D. Tetrahedron Letters, 2017, 58, 509-511.	1.4	5

#	Article	IF	CITATIONS
109	Stereoselective Total Synthesis of the Nonâ€Contiguous Polyketide Natural Product (–)â€Dolabriferol. European Journal of Organic Chemistry, 2018, 2018, 1230-1240.	2.4	5
110	Nitromethane as a Carbanion Source for Domino Benzoannulation with Ynones: Oneâ€Pot Synthesis of Polyfunctional Naphthalenes and a Total Synthesis of Macarpine. Angewandte Chemie, 2018, 130, 17089-17093.	2.0	5
111	Aza-Flavanone Diminishes Parkinsonism in the Drosophila melanogaster Parkin Mutant. ACS Chemical Neuroscience, 2021, 12, 4380-4392.	3.5	5
112	The Concise Synthesis of a Key Intermediate for the Total Synthesis of FumagillinÂ , TNP-470, and Ovalicin. Synthesis, 2008, 2008, 1460-1466.	2.3	4
113	Studies on the Total Synthesis of Antibiotic Macrolactin S: A Conventional Approach for the Synthesis of the C1–C9 and C10–C24 Fragments. Synthesis, 2018, 50, 663-675.	2.3	4
114	Total synthesis of a thromboxane receptor antagonist, terutroban. Organic and Biomolecular Chemistry, 2015, 13, 2951-2957.	2.8	3
115	Chemoenzymatic Process for the Preparation of (<i>S</i>)-7-((<i>tert</i> -Butyldiphenylsilyl)oxy)hept-1-yn-4-ol in a Continuous Packed-Bed Reactor, a Key Intermediate for Eribulin Synthesis. Organic Process Research and Development, 2020, 24, 2657-2664.	2.7	3
116	Sulphonated graphene oxide catalyzed continuous flow synthesis of pyrazolo pyrimidinones, sildenafil and other PDE-5 inhibitors. RSC Advances, 2021, 12, 326-330.	3.6	3
117	A solar tracker integrated microreactor for real-time sunlight induced ketene formation and API synthesis. Green Chemistry, 2022, 24, 4794-4799.	9.0	3
118	Formal Total Synthesis of Stevastelins B and B3. Helvetica Chimica Acta, 2014, 97, 669-688.	1.6	2
119	Stereoselective Total Syntheses of (<i>R</i>)-Strongylodiols A, B, C and D. ChemistrySelect, 2017, 2, 4106-4110.	1.5	2
120	Synthesis and biological evaluation of 12-, 13-, 14-membered macrolides and open chain 2,6-trans-disubstituted dihydropyran analogues for aspergillides. Tetrahedron Letters, 2018, 59, 2570-2576.	1.4	2
121	Diastereomeric differentiation of two pairs of glycal derivatives by electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 2776-2780.	1.5	1
122	Stereoselective total synthesis of the antiplasmodial resorcylic acid lactone paecilomycin F. Arkivoc, 2016, 2016, 123-136.	0.5	1
123	A convergent total synthesis of resorcylic acid lactones zeaenol and cochliomycin A. Tetrahedron Letters, 2022, 97, 153777.	1.4	1
124	A scalable process for the synthesis of key intermediates novoldiamine & hydroxynovaldiamine and their utility in chloroquine, hydroxychloroquine and mepacrine synthesis. Synthetic Communications, 0, , 1-8.	2.1	1
125	Studies Towards the Synthesis of Stereoisomer of Acremolide B. ChemistrySelect, 2017, 2, 1850-1853.	1.5	0
126	Stereoselective Total Synthesis of (S)-Stigmolone: A Fruiting-Body-Inducing Pheromone. Synthesis, 2017, 49, 1702-1706.	2.3	0

#	Article	IF	CITATIONS
127	Gram Scale Synthesis of Honokiol. Organic Preparations and Procedures International, 2022, 54, 49-55.	1.3	0
128	A convergent approach for protected (+)-paecilomycin F. Letters in Organic Chemistry, 2022, 19, .	0.5	0