Wibke E Diederich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/321334/publications.pdf

Version: 2024-02-01

516561 477173 30 969 16 29 citations g-index h-index papers 33 33 33 1627 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radical Biology and Medicine, 2018, 117, 45-57.	1.3	223
2	Deregulation of PPARÎ 2 $\hat{\Gamma}$ target genes in tumor-associated macrophages by fatty acid ligands in the ovarian cancer microenvironment. Oncotarget, 2015, 6, 13416-13433.	0.8	84
3	A Small-Molecule Inhibitor of Bax and Bak Oligomerization Prevents Genotoxic Cell Death and Promotes Neuroprotection. Cell Chemical Biology, 2017, 24, 493-506.e5.	2.5	76
4	The transcriptional PPARÎ 2 /δ network in human macrophages defines a unique agonist-induced activation state. Nucleic Acids Research, 2015, 43, 5033-5051.	6.5	70
5	One Question, Multiple Answers: Biochemical and Biophysical Screening Methods Retrieve Deviating Fragment Hit Lists. ChemMedChem, 2015, 10, 1511-1521.	1.6	54
6	Structure-Guided Design of $\langle i \rangle C \langle i \rangle \langle sub \rangle 2 \langle sub \rangle - Symmetric HIV-1 Protease Inhibitors Based on a Pyrrolidine Scaffold. Journal of Medicinal Chemistry, 2008, 51, 2078-2087.$	2.9	43
7	Computerâ€Aided Design and Synthesis of Nonpeptidic Plasmepsin II and IV Inhibitors. ChemMedChem, 2008, 3, 1323-1336.	1.6	42
8	Binding-Site Compatible Fragment Growing Applied to the Design of \hat{l}^2 (sub>2-Adrenergic Receptor Ligands. Journal of Medicinal Chemistry, 2018, 61, 1118-1129.	2.9	39
9	(<i>Z</i>)-2-(2-Bromophenyl)-3-{[4-(1-methyl-piperazine)amino]phenyl}acrylonitrile (DG172): An Orally Bioavailable PPARβ/δ-Selective Ligand with Inverse Agonistic Properties. Journal of Medicinal Chemistry, 2012, 55, 2858-2868.	2.9	38
10	High-Affinity Peroxisome Proliferator-Activated Receptor \hat{l}^2/\hat{l}^2 -Specific Ligands with Pure Antagonistic or Inverse Agonistic Properties. Molecular Pharmacology, 2011, 80, 828-838.	1.0	37
11	Privileged Structures Meet Human T-Cell Leukemia Virus-1 (HTLV-1): C ₂ -Symmetric 3,4-Disubstituted Pyrrolidines as Nonpeptidic HTLV-1 Protease Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 4845-4850.	2.9	34
12	Targeting the Openâ€Flap Conformation of HIVâ€1 Protease with Pyrrolidineâ€Based Inhibitors. ChemMedChem, 2008, 3, 1337-1344.	1.6	32
13	Tracing Binding Modes in Hitâ€toâ€Lead Optimization: Chameleonâ€Like Poses of Aspartic Protease Inhibitors. Angewandte Chemie - International Edition, 2015, 54, 2849-2853.	7.2	27
14	Development of Improved PPAR <i>\hat{l}^2</i> /i>/i>/ii> Inhibitors. ChemMedChem, 2012, 7, 159-170.	1.6	26
15	Price for Opening the Transient Specificity Pocket in Human Aldose Reductase upon Ligand Binding: Structural, Thermodynamic, Kinetic, and Computational Analysis. ACS Chemical Biology, 2017, 12, 1397-1415.	1.6	23
16	Structural and Kinetic Analysis of Pyrrolidine-Based Inhibitors of the Drug-Resistant Ile84Val Mutant of HIV-1 Protease. Journal of Molecular Biology, 2008, 383, 347-357.	2.0	18
17	Synthesis of 2,3,4,7-tetrahydro-1H-azepines as privileged ligand scaffolds for the design of aspartic protease inhibitors via a ring-closing metathesis approach. Journal of Organometallic Chemistry, 2006, 691, 5406-5422.	0.8	14
18	Pyrrolidine Derivatives as Plasmepsin Inhibitors: Binding Mode Analysis Assisted by Molecular Dynamics Simulations of a Highly Flexible Protein. ChemMedChem, 2010, 5, 443-454.	1.6	14

#	Article	IF	CITATIONS
19	Synthesis and Structure of Novel 1λ4,2,6-Thiadiazines. Journal of Organic Chemistry, 2003, 68, 3817-3830.	1.7	13
20	PPARÎ 2 Î recruits NCOR and regulates transcription reinitiation of ANGPTL4. Nucleic Acids Research, 2019, 47, 9573-9591.	6.5	11
21	Structural basis for catalysis and substrate specificity of a 3C-like cysteine protease from a mosquito mesonivirus. Virology, 2019, 533, 21-33.	1.1	10
22	Design and Synthesis of Highly Active Peroxisome Proliferatorâ€Activated Receptor (PPAR) β∫δ Inverse Agonists with Prolonged Cellular Activity. ChemMedChem, 2016, 11, 488-496.	1.6	9
23	Two Solutions for the Same Problem: Multiple Binding Modes of Pyrrolidine-Based HIV-1 Protease Inhibitors. Journal of Molecular Biology, 2011, 410, 745-755.	2.0	8
24	The Inverse Agonist DG172 Triggers a PPARÎ2 \hat{l} -Independent Myeloid Lineage Shift and Promotes GM-CSF/IL-4-Induced Dendritic Cell Differentiation. Molecular Pharmacology, 2015, 87, 162-173.	1.0	6
25	What Are We Missing? The Detergent Triton Xâ€100 Added to Avoid Compound Aggregation Can Affect Assay Results in an Unpredictable Manner. ChemMedChem, 2017, 12, 1419-1423.	1.6	5
26	Which Properties Allow Ligands to Open and Bind to the Transient Binding Pocket of Human Aldose Reductase?. Biomolecules, 2021, 11, 1837.	1.8	5
27	Identification of inhibitors of the transmembrane protease FlaK of <i>Methanococcus maripaludis</i> MicrobiologyOpen, 2016, 5, 637-646.	1.2	4
28	RNase P Inhibitors Identified as Aggregators. Antimicrobial Agents and Chemotherapy, 2021, 65, e0030021.	1.4	3
29	ChamÃæonâ€artige Bindungsmodi in der Leitstrukturoptimierung: wechselnde Bindungsgeometrien bei Aspartylproteaseâ€nhibitoren. Angewandte Chemie, 2015, 127, 2891-2896.	1.6	1
30	Synthesis and Structure of Novel 1î»4,2,6-Thiadiazines ChemInform, 2003, 34, no.	0.1	0