Christophe Cudennec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3213095/publications.pdf

Version: 2024-02-01

84 papers

4,246 citations

279701 23 h-index 61 g-index

95 all docs 95 docs citations

95 times ranked 5076 citing authors

#	Article	IF	Citations
1	A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal, 2013, 58, 1198-1255.	1.2	821
2	"Panta Rhei—Everything Flows― Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal, 2013, 58, 1256-1275.	1.2	569
3	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	1.2	474
4	Plausible and desirable futures in the Anthropocene: A new research agenda. Global Environmental Change, 2016, 39, 351-362.	3.6	389
5	Sociohydrology: Scientific Challenges in Addressing the Sustainable Development Goals. Water Resources Research, 2019, 55, 6327-6355.	1.7	226
6	Re-conceptualizing the Anthropocene: A call for collaboration. Global Environmental Change, 2016, 39, 318-327.	3.6	210
7	Dryland hydrology in Mediterranean regions—a review. Hydrological Sciences Journal, 2007, 52, 1077-1087.	1.2	168
8	Challenges in operationalizing the water–energy–food nexus. Hydrological Sciences Journal, 2017, 62, 1714-1720.	1.2	159
9	Measurements and Observations in the XXI century (MOXXI): innovation and multi-disciplinarity to sense the hydrological cycle. Hydrological Sciences Journal, 2018, 63, 169-196.	1.2	151
10	Plant functional traits capture species richness variations along a flooding gradient. Oikos, 2011, 120, 389-398.	1.2	68
11	Evaluation of potential evapotranspiration assessment methods for hydrological modelling with SWAT—Application in data-scarce rural Tunisia. Agricultural Water Management, 2016, 174, 39-51.	2.4	68
12	Adaptation of water resources systems to changing society and environment: a statement by the International Association of Hydrological Sciences. Hydrological Sciences Journal, 2016, 61, 2803-2817.	1.2	57
13	Panta Rhei 2013–2015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 0, , 1-18.	1.2	53
14	A geomorphological explanation of the unit hydrograph concept. Hydrological Processes, 2004, 18, 603-621.	1.1	47
15	Application of morphological approaches to determine unit hydrographs of urban catchments. Hydrological Processes, 2005, 19, 1021-1035.	1.1	44
16	Incorporating elevation in rainfall interpolation in Tunisia using geostatistical methods. Hydrological Sciences Journal, 2012, 57, 1294-1314.	1.2	42
17	Structure du gradient pluviométrique de la transition Méditerranée–Sahara en Tunisie: déterminants géographiques et saisonnalité / <i>Structure of the rainfall gradient in the Mediterranean–Sahara transition in Tunisia: geographical determinants and seasonality</i> 2007. 52. 1088-1102.	1.2	41
18	Use of a geomorphological transfer function to model design floods in small hillside catchments in semiarid Tunisia. Journal of Hydrology, 2004, 287, 197-213.	2.3	35

#	Article	IF	Citations
19	Modeling Water Quality to Improve Agricultural Practices and Land Management in a Tunisian Catchment Using the Soil and Water Assessment Tool. Journal of Environmental Quality, 2014, 43, 18-25.	1.0	34
20	Citizens AND HYdrology (CANDHY): conceptualizing a transdisciplinary framework for citizen science addressing hydrological challenges. Hydrological Sciences Journal, 2022, 67, 2534-2551.	1.2	33
21	Accounting for sparsely observed rainfall space—time variability in a rainfall—runoff model of a semiarid Tunisian basin/Prise en compte d'observations peu denses de la variabilité spatiotemporelle de la pluie dans une modélisation pluie—débit d'un bassin semi-aride Tunisien. Hydrological Sciences lournal, 2005, 50	1.2	31
22	Ditch network extraction and hydrogeomorphological characterization using LiDAR-derived DTM in wetlands. Hydrology Research, 2015, 46, 276-290.	1.1	28
23	A Framework to Consider Soil Ecosystem Services in Territorial Planning. Frontiers in Environmental Science, 2020, 8, .	1.5	27
24	Hydrological processes in macrocatchment water harvesting in the arid region of Tunisia: the traditional system of tabias/Processus hydrologiques au sein d'un amĀ©nagement de collecte des eaux dans la région aride tunisienne: le système traditionnel des tabias. Hydrological Sciences Journal, 2004, 49, .	1.2	26
25	Geostatistically based optimization of a rainfall monitoring network extension: case of the climatically heterogeneous Tunisia. Hydrology Research, 2017, 48, 514-541.	1.1	24
26	Editorial – Towards FAIR and SQUARE hydrological data. Hydrological Sciences Journal, 2020, 65, 681-682.	1.2	22
27	Intergovernmental cooperation for hydrometry – what, why and how?. Hydrological Sciences Journal, 2022, 67, 2552-2566.	1.2	21
28	Hydrological sciences and water security: An overview. Proceedings of the International Association of Hydrological Sciences, 0, 366, 1-9.	1.0	21
29	The multi-objective role of <i>HSJ</i> in processing and disseminating hydrological knowledge. Hydrological Sciences Journal, 2008, 53, 485-487.	1.2	19
30	Streamflow prediction in ungauged basins through geomorphology-based hydrograph transposition. Hydrology Research, 2015, 46, 291-302.	1.1	19
31	Valuing scarce observation of rainfall variability with flexible semi-distributed hydrological modelling – Mountainous Mediterranean context. Science of the Total Environment, 2018, 643, 346-356.	3.9	18
32	Structural patterns in river network organization at both infra- and supra-basin levels: the case of a granitic relief. Earth Surface Processes and Landforms, 2006, 31, 369-381.	1.2	16
33	Transferring measured discharge time series: Largeâ€scale comparison of Topâ€kriging to geomorphologyâ€based inverse modeling. Water Resources Research, 2016, 52, 5555-5576.	1.7	16
34	A near infrared index to assess effects of soil texture and organic carbon content on soil water content. European Journal of Soil Science, 2019, 70, 151-161.	1.8	16
35	On width function-based unit hydrographs deduced from separately random self-similar river networks and rainfall variability: Discussion of "Coding random self-similar river networks and calculating geometric distances: 1. General methodology―and "2. Application to runoff simulations― Hydrological Sciences Journal. 2007. 52. 230-237.	1.2	15
36	Water quality: the missing dimension of water in the water–energy–food nexus. Hydrological Sciences Journal, 2021, 66, 745-758.	1.2	15

#	Article	IF	Citations
37	Epistemological dimensions of the water–energy–food nexus approach: reply to discussions of "Challenges in operationalizing the water–energy–food nexusâ€ . Hydrological Sciences Journal, 2018, 63, 1868-1871.	1.2	13
38	Contrasting behaviour of two riparian wetlands in relation to their location in the hydrographic network. Journal of Hydrology, 2011, 406, 39-53.	2.3	12
39	Statistical distribution of rainy events characteristics and instantaneous hyetographs generation (Merguellil watershed in central Tunisia). Arabian Journal of Geosciences, 2013, 6, 1581-1590.	0.6	12
40	Structures spatiales de l'évapotranspiration de référence et des variables climatiques corrélées en Tunisie. Hydrological Sciences Journal, 2012, 57, 818-829.	1.2	11
41	Regional watershed characterization and classification with river network analyses. Earth Surface Processes and Landforms, 2017, 42, 2068-2081.	1.2	11
42	Assessing the hydrological impacts of agricultural changes upstream of the Tunisian World Heritage sea-connected Ichkeul Lake. Proceedings of the International Association of Hydrological Sciences, 0, 365, 61-65.	1.0	11
43	Gestion de l'eau en milieu arideÂ: considérations physiques et sociales pour l'identification des territoires pertinents dans le Sud-Est tunisien. Développement Durable Et Territoires, 2006, , .	0.0	10
44	Joint spatial, topological and scaling analysis framework of river-network geomorphometry. Geomorphologie Relief, Processus, Environnement, 2013, 19, 7-16.	0.7	10
45	Modélisation robuste de l'impact agrégé de retenues collinaires sur l'hydrologie de surface. Revue Des Sciences De L'Eau, 2004, 17, 181-194.	0.2	9
46	Joint editorial: Fostering innovation and improving impact assessment for journal publications in hydrology. Water Resources Research, 2016, 52, 2399-2402.	1.7	9
47	Statistical detection and no-detection of rainfall change trends and breaks in semiarid Tunisia—50+ years over the Merguellil agro-hydro-climatic reference basin. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	9
48	PUB in Québec: A robust geomorphology-based deconvolution-reconvolution framework for the spatial transposition of hydrographs. Journal of Hydrology, 2019, 570, 378-392.	2.3	9
49	Joint editorial – Fostering innovation and improving impact assessment for journal publications in hydrology. Hydrological Sciences Journal, 0, , 1-4.	1.2	8
50	An end-user-friendly hydrological Web Service for hydrograph prediction in ungauged basins. Hydrological Sciences Journal, 2020, , 1 -9.	1.2	8
51	Editorial: Hydrogeomorphology – a long-term scientific interface. Hydrology Research, 2015, 46, 175-179.	1.1	7
52	Hydrometeorology and Hydroclimate. Advances in Meteorology, 2016, 2016, 1-4.	0.6	7
53	Net rainfall estimation by the inversion of a geomorphology-based transfer function and discharge deconvolution. Hydrological Sciences Journal, 2018, 63, 285-301.	1.2	7
54	Assessment of freshwater discharge into a coastal bay through multi-basin ensemble hydrological modelling. Science of the Total Environment, 2019, 669, 812-820.	3.9	7

#	Article	IF	Citations
55	Invigorating Hydrological Research Through Journal Publications. Water Resources Research, 2020, 56, .	1.7	5
56	Relevance of the H2U model to predict the discharge of a catchment. Water Science and Technology, 1997, 36, 169-175.	1.2	5
57	Invigorating hydrological research through journal publications. Hydrological Sciences Journal, 2018, 63, 1113-1117.	1.2	4
58	Relevance of a near infrared spectral index for assessing tillage and fertilization effects on soil water retention. Soil and Tillage Research, 2019, 194, 104345.	2.6	4
59	Prediction of streamflow from the set of basins flowing into a coastal bay. Proceedings of the International Association of Hydrological Sciences, 0, 365, 55-60.	1.0	4
60	Interpolation of reference evapotranspiration in Tunisia using ordinary kriging. Sécheresse, 2012, 23, 121-132.	0.1	3
61	GéoSAS: A modular and interoperable Open Source Spatial Data Infrastructure for research. Proceedings of the International Association of Hydrological Sciences, 2015, 368, 9-14.	1.0	3
62	Joint editorial: Invigorating hydrological research through journal publications. Hydrology and Earth System Sciences, 2018, 22, 5735-5739.	1.9	3
63	Preface: Hydrological processes and water security in a changing world. Proceedings of the International Association of Hydrological Sciences, 0, 383, 3-4.	1.0	3
64	Governing Open Science. Hydrological Sciences Journal, 2022, 67, 2359-2362.	1.2	3
65	On the transposition and the improvement of an allometric model from river networks to trees: identification of analogous objects, variables and modellings. Journal of Theoretical Biology, 2005, 233, 151-157.	0.8	2
66	Sensitivity analysis of SWAT model to the spatial rainfall distribution and watershed subdivision in streamflow simulations in the Mediterranean context: A case study in the Joumine watershed. Tunisia. , 2013, , .		2
67	Online watershed boundary delineation: sharing models through Spatial Data Infrastructures. Proceedings of the International Association of Hydrological Sciences, 2015, 368, 144-149.	1.0	2
68	Joint Editorial: Fostering innovation and improving impact assessment for journal publications in hydrology. Hydrology and Earth System Sciences, 2016, 20, 1081-1084.	1.9	2
69	Joint Editorial—Fostering Innovation and Improving Impact Assessment for Journal Publications in Hydrology. Vadose Zone Journal, 2016, 15, 1-4.	1.3	1
70	Should auld acquaintance be forgot? Comment on "Farewell, <i>HSJ</i> !—address from the retiring editor―by Z.W. Kundzewicz. Hydrological Sciences Journal, 0, , 1-2.	1.2	1
71	Weak relationships between landforms and hydro-climatologic processes: a case study in Haiti. Hydrology Research, 2019, 50, 744-760.	1.1	1
72	Autopsie des événements hydrométéorologiques extrêmes de 1969 en Tunisie. Proceedings of the International Association of Hydrological Sciences, 0, 369, 169-173.	1.0	1

#	Article	IF	CITATIONS
73	Geomorphometry-based modelling of discharge series in ungauged basins – Robustness regarding DEM sources. Proceedings of the International Association of Hydrological Sciences, 0, 383, 129-134.	1.0	1
74	Joint Editorial Invigorating Hydrological Research through Journal Publications. Journal of Hydrology and Hydromechanics, 2018, 66, 257-260.	0.7	1
75	Preface: Hydrology of Large River Basins in Africa. Proceedings of the International Association of Hydrological Sciences, 0, 384, 1-4.	1.0	1
76	Reply to comment on ?A geomorphological explanation of the unit hydrograph concept? by C. Fleurant and P. Boulestreau. Hydrological Processes, 2005, 19, 545-547.	1.1	0
77	Joint Editorial: Invigorating hydrological research through journal publications. Hydrology Research, 2018, 49, iii-ix.	1.1	0
78	Invigorating Hydrological Research through Journal Publications. Journal of Hydrometeorology, 2018, 19, 1713-1719.	0.7	0
79	Joint Editorial: Invigorating Hydrological Research through Journal Publications. Vadose Zone Journal, 2018, 17, 180001ed.	1.3	0
80	Invigorating hydrological research through journal publications. Ecohydrology, 2018, 11, e2016.	1.1	0
81	Valuing knowledge on temporal dynamics from long-term monitored basins for neighbouring sites. Proceedings of the International Association of Hydrological Sciences, 0, 366, 179-180.	1.0	0
82	Preface: Extreme Hydrological Events. Proceedings of the International Association of Hydrological Sciences, 0, 369, 1-2.	1.0	0
83	Joint editorial: Invigorating hydrological research through journal publications. Proceedings of the International Association of Hydrological Sciences, 0, 380, 3-8.	1.0	0
84	Ensuring consideration of water quality in nexus approaches in the science–practice continuum: reply to discussion of "Water quality: the missing dimension of water in the water–energy–food nexus?― Hydrological Sciences Journal, 2022, 67, 1291-1293.	1.2	0