
Frederic Dorandeu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3213065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammatory changes during epileptogenesis and spontaneous seizures in a mouse model of mesiotemporal lobe epilepsy. Epilepsia, 2011, 52, 2315-2325.	2.6	121
2	Prolonged inflammatory gene response following soman-induced seizures in mice. Toxicology, 2007, 238, 166-176.	2.0	108
3	Soman-induced convulsions: The neuropathology revisited. Toxicology, 2005, 215, 1-24.	2.0	100
4	Review of the Value of Huperzine as Pretreatment of Organophosphate Poisoning. NeuroToxicology, 2002, 23, 1-5.	1.4	93
5	Medical management of organophosphate-induced seizures. Journal of Physiology (Paris), 1998, 92, 369-373.	2.1	81
6	Efficacy of the ketamine–atropine combination in the delayed treatment of soman-induced status epilepticus. Brain Research, 2005, 1051, 164-175.	1.1	67
7	Light Puncture Robot for CT and MRI Interventions. IEEE Engineering in Medicine and Biology Magazine, 2008, 27, 42-50.	1.1	60
8	Treatment of Status Epilepticus with Ketamine, Are we There yet?. CNS Neuroscience and Therapeutics, 2013, 19, 411-427.	1.9	54
9	Combinations of ketamine and atropine are neuroprotective and reduce neuroinflammation after a toxic status epilepticus in mice. Toxicology and Applied Pharmacology, 2012, 259, 195-209.	1.3	46
10	Protective effects of S(+) ketamine and atropine against lethality and brain damage during soman-induced status epilepticus in guinea-pigs. Toxicology, 2007, 234, 185-193.	2.0	42
11	Selection of reference genes for realâ€time quantitative reverse transcriptionâ€polymerase chain reaction in hippocampal structure in a murine model of temporal lobe epilepsy with focal seizures. Journal of Neuroscience Research, 2010, 88, 1000-1008.	1.3	42
12	Cerebral edema induced in mice by a convulsive dose of soman. Evaluation through diffusion-weighted magnetic resonance imaging and histology. Toxicology and Applied Pharmacology, 2007, 220, 125-137.	1.3	41
13	Acute exposure to a low or mild dose of soman: Biochemical, behavioral and histopathological effects. Pharmacology Biochemistry and Behavior, 2001, 69, 561-569.	1.3	39
14	Ketamine combinations for the field treatment of soman-induced self-sustaining status epilepticus. Review of current data and perspectives. Chemico-Biological Interactions, 2013, 203, 154-159.	1.7	37
15	Delta Activity as an Early Indicator for Soman-Induced Brain Damage: A Review. NeuroToxicology, 2001, 22, 299-315.	1.4	34
16	Development and application of procedures for the highly sensitive quantification of cyclosarin enantiomers in hemolysed swine blood samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 859, 9-15.	1.2	31
17	Secreted phospholipase A2-induced neurotoxicity and epileptic seizures after intracerebral administration: An unexplained heterogeneity as emphasized with paradoxin and crotoxin. , 1998, 54, 848-862.		26
18	SUBCHRONIC ADMINISTRATION OF PYRIDOSTIGMINE OR HUPERZINE TO PRIMATES: COMPARED EFFICACY AGAINST SOMAN TOXICITY. Drug and Chemical Toxicology, 2002, 25, 309-320.	1.2	26

#	Article	IF	CITATIONS
19	SUBCHRONIC ADMINISTRATION OF VARIOUS PRETREATMENTS OF NERVE AGENT POISONING. II. COMPARED EFFICACY AGAINST SOMAN TOXICITY. Drug and Chemical Toxicology, 2001, 24, 165-180.	1.2	24
20	Topical efficacy of dimercapto-chelating agents against lewisite-induced skin lesions in SKH-1 hairless mice. Toxicology and Applied Pharmacology, 2013, 272, 291-298.	1.3	23
21	Modeling and simulation of organophosphate-induced neurotoxicity: Prediction and validation by experimental studies. NeuroToxicology, 2016, 54, 140-152.	1.4	22
22	Intrahippocampal cholinesterase inhibition induces epileptogenesis in mice without evidence of neurodegenerative events. Neuroscience, 2009, 162, 1351-1365.	1.1	19
23	<i>In vitro</i> and <i>in vivo</i> efficacy of PEGylated diisopropyl fluorophosphatase (DFPase). Drug Testing and Analysis, 2012, 4, 262-270.	1.6	18
24	SUBCHRONIC ADMINISTRATION OF VARIOUS PRETREATMENTS OF NERVE AGENT POISONING. I. PROTECTION OF BLOOD AND CENTRAL CHOLINESTERASES, INNOCUOUSNESS TOWARDS BLOOD-BRAIN BARRIER PERMEABILITY. Drug and Chemical Toxicology, 2001, 24, 151-164.	1.2	17
25	Time course of lewisiteâ€induced skin lesions and inflammatory response in the <scp>SKH</scp> â€1 hairless mouse model. Wound Repair and Regeneration, 2014, 22, 272-280.	1.5	17
26	Neuroprotective and Antiepileptic Activities of Ketamine in Nerve Agent Poisoning. Anesthesiology, 2003, 98, 1517-1517.	1.3	16
27	Prediction of Neuroprotective Treatment Efficiency Using a HRMAS NMR-Based Statistical Model of Refractory Status Epilepticus on Mouse: A Metabolomic Approach Supported by Histology. Journal of Proteome Research, 2012, 11, 3782-3795.	1.8	16
28	Inhibition of crotoxin phospholipase A2 activity by manoalide associated with inactivation of crotoxin toxicity and dissociation of the heterodimeric neurotoxic complex. Biochemical Pharmacology, 2002, 63, 755-761.	2.0	15
29	Hyperosmolar treatment of soman-induced brain lesions in mice: Evaluation of the effects through diffusion-weighted magnetic resonance imaging and through histology. Toxicology, 2008, 253, 97-103.	2.0	14
30	Beneficial effects of a ketamine/atropine combination in soman-poisoned rats under a neutral thermal environment. NeuroToxicology, 2015, 50, 10-19.	1.4	11
31	Ketamine for the treatment of (super) refractory status epilepticus? Not quite yet. Expert Review of Neurotherapeutics, 2017, 17, 419-421.	1.4	11
32	Happy 50th Anniversary Ketamine. CNS Neuroscience and Therapeutics, 2013, 19, 369-369.	1.9	9
33	Flunarizine: A Possible Adjuvant Medication Against Soman Poisoning?. Drug and Chemical Toxicology, 2004, 27, 213-231.	1.2	7
34	Distortion product otoacoustic emissions as non-invasive biomarkers and predictors of soman-induced central neurotoxicity: A preliminary study. Toxicology, 2007, 238, 119-129.	2.0	5
35	Cognitive and emotional impairments after cutaneous intoxication by CEES (a sulfur mustard analog) in mice. Toxicology Letters, 2018, 293, 73-76.	0.4	5
36	Superior efficacy of HI-6 dimethanesulfonate over pralidoxime methylsulfate against Russian VX poisoning in cynomolgus monkeys (Macaca fascicularis). Toxicology, 2018, 410, 96-105.	2.0	5

Frederic Dorandeu

#	Article	IF	CITATIONS
37	Ketamine does not impair heat tolerance in rats. European Journal of Pharmacology, 2012, 691, 77-85.	1.7	4
38	Hypertonic mannitol in mice poisoned by a convulsive dose of soman: Antilethal activity without neuroprotection. Toxicology, 2010, 268, 78-88.	2.0	3
39	Prediction of soman-induced cerebral damage by distortion product otoacoustic emissions. Toxicology, 2010, 277, 38-48.	2.0	2
40	Re: Therapy against organophosphate poisoning: The importance of anticholinergic drugs with antiglutamatergic properties (Toxicol. Appl. Pharmacol. 232, 351–358, 2008). Toxicology and Applied Pharmacology, 2009, 238, 188.	1.3	1
41	A new use for an old method: The Woelcke myelin stain for counting degenerating neurons in the brain of mice following status epilepticus. NeuroToxicology, 2012, 33, 789-795.	1.4	1
42	Cyclooxygenase-2 contributes to VX-induced cell death in cultured cortical neurons. Toxicology Letters, 2012, 210, 71-77.	0.4	1
43	Strengthening the Cost Effectiveness of Medical Countermeasure Development Against Rare Biological Threats: The Ebola Outbreak. Pharmaceutical Medicine, 2017, 31, 423-436.	1.0	1
44	Models of Chemically-Induced Acute Seizures and Epilepsy: Toxic Compounds and Drugs of Addiction. , 2017, , 529-551.		1
45	Electro-behavioral phenotype and cell injury following exposure to paraoxon-ethyl in mice: Effect of the genetic background. Chemico-Biological Interactions, 2018, 290, 119-125.	1.7	1
46	Early Changes in MAP2 Protein in the Rat Hippocampus Following Soman Intoxication. Drug and Chemical Toxicology, 2003, 26, 219-229.	1.2	0
47	Use of IFCC guidelines to verify acetylcholinesterase reference interval in adults determined with ChE check mobile testing system. Clinical Chemistry and Laboratory Medicine, 2017, 55, e268-e270.	1.4	0
48	Interdependent Factors of Demand-Side Rationale for Chemical, Biological, Radiological, and Nuclear Medical Countermeasures. Disaster Medicine and Public Health Preparedness, 2020, 14, 739-755.	0.7	0