Zhenming Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212993/publications.pdf

Version: 2024-02-01

471371 501076 42 849 17 28 citations h-index g-index papers 49 49 49 768 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temporal and spatial changes of Pb in soils in Cuihu wetland, Beijing, China. Environmental Technology (United Kingdom), 2022, 43, 1181-1188.	1.2	2
2	Effects of roots systems on hydrological connectivity below the soil surface in the Yellow River Delta wetland. Ecohydrology, 2022, 15, e2393.	1.1	5
3	Concentrations and isotopic analysis for the sources and transfer of lead in an urban atmosphere-plant-soil system. Journal of Environmental Management, 2022, 311, 114771.	3.8	9
4	Hydrological connectivity improves soil nutrients and root architecture at the soil profile scale in a wetland ecosystem. Science of the Total Environment, 2021, 762, 143162.	3.9	20
5	Tides affect plant connectivity in coastal wetlands on a small-patch scale. Chemosphere, 2021, 262, 127977.	4.2	5
6	A thresholdâ€ike effect on the interaction between hydrological connectivity and dominant plant population in tidal marsh wetlands. Land Degradation and Development, 2021, 32, 2922-2935.	1.8	11
7	Effect of straw decomposition on organic carbon fractions and aggregate stability in salt marshes. Science of the Total Environment, 2021, 777, 145852.	3.9	9
8	How Waterlogged Conditions Influence the Nitrogen Dynamics in a Soil–Water–Plant System: Implications for Wetland Restoration. Water (Switzerland), 2021, 13, 2957.	1.2	2
9	Effects of Imazapyr on Spartina alterniflora and Soil Bacterial Communities in a Mangrove Wetland. Water (Switzerland), 2021, 13, 3277.	1.2	6
10	Effect of the wetland environment on particulate matter and dry deposition. Environmental Technology (United Kingdom), 2020, 41, 1054-1064.	1,2	6
11	The blocking effect of atmospheric particles by forest and wetland at different air quality grades in Beijing China. Environmental Technology (United Kingdom), 2020, 41, 2266-2276.	1.2	7
12	Assessing the spatiotemporal characteristics of dry deposition flux in forests and wetlands. Environmental Technology (United Kingdom), 2020, 41, 1615-1626.	1.2	2
13	The size and distribution of tidal creeks affects salt marsh restoration. Journal of Environmental Management, 2020, 259, 110070.	3.8	21
14	Multi-scale analysis of hydrological connectivity and plant response in the Yellow River Delta. Science of the Total Environment, 2020, 702, 134889.	3.9	21
15	The PM removal process of wetland plant leaves with different rainfall intensities and duration. Journal of Environmental Management, 2020, 275, 111239.	3.8	15
16	Coexistence mechanisms of Tamarix chinensis and Suaeda salsa in the Yellow River Delta, China. Environmental Science and Pollution Research, 2020, 27, 26172-26181.	2.7	2
17	The effect of Aspergillus niger as a dietary supplement on blood parameters, intestinal morphology, and gut microflora in Haidong chicks reared in a high altitude environment. Veterinary World, 2020, 13, 2209-2215.	0.7	4
18	Understanding PM _{2.5} concentration and removal efficiency variation in urban forest parkâ€"Observation at human breathing height. PeerJ, 2020, 8, e8988.	0.9	3

#	Article	IF	CITATIONS
19	Water quantity and quality changes from forested riparian buffer in Beijing. Environmental Science and Pollution Research, 2019, 26, 29041-29051.	2.7	7
20	Influence of fungi and bag mesh size on litter decomposition and water quality. Environmental Science and Pollution Research, 2019, 26, 18304-18315.	2.7	16
21	Particle removal in polluted cities: Insights from the wash-off process dynamics for different wetland plants. Journal of Environmental Management, 2019, 245, 114-121.	3.8	11
22	Runoff Response to Soil Moisture and Micro-topographic Structure on the Plot Scale. Scientific Reports, 2019, 9, 2532.	1.6	22
23	Dry Deposition of Particulate Matter and Ions in Forest at Different Heights. International Journal of Environmental Research, 2019, 13, 117-130.	1.1	13
24	Lead isotope trends and sources in the atmosphere at the artificial wetland. PeerJ, 2019, 7, e7851.	0.9	1
25	Wetlands with greater degree of urbanization improve PM2.5 removal efficiency. Chemosphere, 2018, 207, 601-611.	4.2	22
26	Effectiveness of wetland plants as biofilters for inhalable particles in an urban park. Journal of Cleaner Production, 2018, 194, 435-443.	4.6	21
27	Comparison of dry and wet deposition of particulate matter in near-surface waters during summer. PLoS ONE, 2018, 13, e0199241.	1.1	58
28	A review of preferential water flow in soil science. Canadian Journal of Soil Science, 2018, 98, 604-618.	0.5	33
29	Sabina chinensis and Liriodendron chinense improve air quality in Beijing, China. PLoS ONE, 2018, 13, e0189640.	1.1	3
30	Impacts of forest structure on precipitation interception and runâ€off generation in a semiarid region in northern China. Hydrological Processes, 2018, 32, 2362-2376.	1.1	21
31	Particle removal by vegetation: comparison in a forest and a wetland. Environmental Science and Pollution Research, 2017, 24, 1597-1607.	2.7	22
32	Multi-scale comparison of the fine particle removal capacity of urban forests and wetlands. Scientific Reports, 2017, 7, 46214.	1.6	22
33	Influence of rainfall duration and intensity on particulate matter removal from plant leaves. Science of the Total Environment, 2017, 609, 11-16.	3.9	80
34	Dry deposition of particulate matter at an urban forest, wetland and lake surface in Beijing. Atmospheric Environment, 2016, 125, 178-187.	1.9	72
35	Removal efficiency of particulate matters at different underlying surfaces in Beijing. Environmental Science and Pollution Research, 2016, 23, 408-417.	2.7	32
36	Spatiotemporal Characteristics of Particulate Matter and Dry Deposition Flux in the Cuihu Wetland of Beijing. PLoS ONE, 2016, 11, e0158616.	1.1	30

#	Article	IF	CITATION
37	Particulate matter assessment of a wetland in Beijing. Journal of Environmental Sciences, 2015, 36, 93-101.	3.2	28
38	PM2.5 Concentration Differences between Various Forest Types and Its Correlation with Forest Structure. Atmosphere, 2015, 6, 1801-1815.	1.0	59
39	Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. Journal of Environmental Sciences, 2015, 27, 33-41.	3.2	109
40	Impacts of aquatic macrophytes configuration modes on water quality. Water Science and Technology, 2014, 69, 253-261.	1.2	4
41	Spatial variability of soil nitrogen and phosphorus of a mixed forest ecosystem in Beijing, China. Environmental Earth Sciences, 2010, 60, 1783-1792.	1.3	12
42	The effect of bile salt diet supplementation on genes related to fat metabolism in yellow-feathered broilers. Veterinary World, 0, , 911-918.	0.7	1