
Giulia De Lorenzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9452-9457.	3.3	638
2	Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2 , but not SID2 , EDS5 or PAD4. Plant Journal, 2003, 35, 193-205.	2.8	463
3	Activation of Defense Response Pathways by OGs and Flg22 Elicitors in Arabidopsis Seedlings. Molecular Plant, 2008, 1, 423-445.	3.9	448
4	Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Frontiers in Plant Science, 2013, 4, 49.	1.7	401
5	Resistance to Botrytis cinerea Induced in Arabidopsis by Elicitors Is Independent of Salicylic Acid, Ethylene, or Jasmonate Signaling But Requires PHYTOALEXIN DEFICIENT3 Â. Plant Physiology, 2007, 144, 367-379.	2.3	383
6	THEROLE OFPOLYGALACTURONASE-INHIBITINGPROTEINS(PGIPS)INDEFENSEAGAINSTPATHOGENICFUNGI. Annual Review of Phytopathology, 2001, 39, 313-335.	3.5	325
7	Host-Pathogen Interactions. Plant Physiology, 1989, 90, 542-548.	2.3	262
8	Extracellular H2O2 Induced by Oligogalacturonides Is Not Involved in the Inhibition of the Auxin-Regulated rolB Gene Expression in Tobacco Leaf Explants. Plant Physiology, 2000, 122, 1379-1386.	2.3	248
9	Tandemly Duplicated Arabidopsis Genes That Encode Polygalacturonase-Inhibiting Proteins Are Regulated Coordinately by Different Signal Transduction Pathways in Response to Fungal Infection. Plant Cell, 2003, 15, 93-106.	3.1	240
10	Arabidopsis MPK3 and MPK6 Play Different Roles in Basal and Oligogalacturonide- or Flagellin-Induced Resistance against <i>Botrytis cinerea</i> Â Â. Plant Physiology, 2011, 157, 804-814.	2.3	239
11	The AtrbohD-Mediated Oxidative Burst Elicited by Oligogalacturonides in Arabidopsis Is Dispensable for the Activation of Defense Responses Effective against <i>Botrytis cinerea</i> Â Â. Plant Physiology, 2008, 148, 1695-1706.	2.3	232
12	The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed l²-strand/l²-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO Journal, 1999, 18, 2352-2363.	3.5	214
13	Structural Basis for the Interaction between Pectin Methylesterase and a Specific Inhibitor Protein. Plant Cell, 2005, 17, 849-858.	3.1	207
14	Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Current Opinion in Plant Biology, 2002, 5, 295-299.	3.5	206
15	The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10124-10128.	3.3	195
16	Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 616-621.	3.3	192
17	Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5533-5538.	3.3	179
18	Purification and Characterization of a Polygalacturonase-Inhibiting Protein from <i>Phaseolus vulgaris</i> L Plant Physiology, 1987, 85, 631-637.	2.3	131

#	Article	IF	CITATIONS
19	Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13425-13430.	3.3	131
20	Competitive inhibition of the auxinâ€induced elongation by αâ€Dâ€oligogalacturonides in pea stem segments. Physiologia Plantarum, 1988, 72, 499-504.	2.6	125
21	An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. Frontiers in Plant Science, 2015, 6, 146.	1.7	125
22	Characterization of the Complex Locus of Bean Encoding Polygalacturonase-Inhibiting Proteins Reveals Subfunctionalization for Defense against Fungi and Insects. Plant Physiology, 2004, 135, 2424-2435.	2.3	122
23	Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L Plant Journal, 1992, 2, 367-373.	2.8	115
24	Four Arabidopsis berberine bridge enzymeâ€like proteins are specific oxidases that inactivate the elicitorâ€active oligogalacturonides. Plant Journal, 2018, 94, 260-273.	2.8	114
25	Polygalacturonase-Inhibiting Proteins (PGIPs) with Different Specificities Are Expressed in Phaseolus vulgaris. Molecular Plant-Microbe Interactions, 1997, 10, 852-860.	1.4	112
26	Transgenic Expression of a Fungal endo-Polygalacturonase Increases Plant Resistance to Pathogens and Reduces Auxin Sensitivity. Plant Physiology, 2008, 146, 323-324.	2.3	112
27	Transgenic expression of polygalacturonaseâ€inhibiting proteins in <i>Arabidopsis</i> and wheat increases resistance to the flower pathogen <i>Fusarium graminearum</i> . Plant Biology, 2012, 14, 31-38.	1.8	107
28	Cell wall traits that influence plant development, immunity, and bioconversion. Plant Journal, 2019, 97, 134-147.	2.8	106
29	Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection. Plant Journal, 1994, 5, 625-634.	2.8	105
30	Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends in Immunology, 2018, 39, 937-950.	2.9	105
31	Elicitation of Necrosis in Vigna unguiculata Walp. by Homogeneous Aspergillus niger Endo-Polygalacturonase and by α-d-Galacturonate Oligomers. Plant Physiology, 1987, 85, 626-630.	2.3	102
32	TwoArabidopsis thalianagenes encode functional pectin methylesterase inhibitors1. FEBS Letters, 2004, 557, 199-203.	1.3	97
33	Engineering plant resistance by constructing chimeric receptors that recognize damageâ€associated molecular patterns (DAMPs). FEBS Letters, 2011, 585, 1521-1528.	1.3	95
34	Oligogalacturonides inhibit the formation of roots on tobacco explants. Plant Journal, 1993, 4, 207-213.	2.8	91
35	Oligogalacturonides Prevent Rhizogenesis in rolB-Transformed Tobacco Explants by Inhibiting Auxin-Induced Expression of the rolB Gene Plant Cell, 1996, 8, 477-487.	3.1	88
36	Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection. Physiological and Molecular Plant Pathology, 2005, 67, 108-115.	1.3	88

#	Article	IF	CITATIONS
37	Polygalacturonase-Inhibiting Protein Interacts with Pectin through a Binding Site Formed by Four Clustered Residues of Arginine and Lysine. Plant Physiology, 2006, 141, 557-564.	2.3	88
38	Antisense Expression of the Arabidopsis thaliana AtPGIP1 Gene Reduces Polygalacturonase-Inhibiting Protein Accumulation and Enhances Susceptibility to Botrytis cinerea. Molecular Plant-Microbe Interactions, 2006, 19, 931-936.	1.4	87
39	Polygalacturonase, PGIP and oligogalacturonides in cell-cell communication. Biochemical Society Transactions, 1994, 22, 394-397.	1.6	86
40	Can Phaseolus PGIP inhibit pectic enzymes from microbes and plants?. Phytochemistry, 1990, 29, 447-449.	1.4	85
41	The Expression of a Bean PGIP in Transgenic Wheat Confers Increased Resistance to the Fungal Pathogen <i>Bipolaris sorokiniana</i> . Molecular Plant-Microbe Interactions, 2008, 21, 171-177.	1.4	81
42	Ethylene production in <i><scp>B</scp>otrytis cinereaâ€</i> and oligogalacturonideâ€induced immunity requires calciumâ€dependent protein kinases. Plant Journal, 2015, 84, 1073-1086.	2.8	80
43	An Arabidopsis berberine bridge enzymeâ€like protein specifically oxidizes cellulose oligomers and plays a role in immunity. Plant Journal, 2019, 98, 540-554.	2.8	80
44	No Evidence for Binding Between Resistance Gene Product Cf-9 of Tomato and Avirulence Gene Product AVR9 of Cladosporium fulvum. Molecular Plant-Microbe Interactions, 2001, 14, 867-876.	1.4	78
45	GRP-3andKAPP,encoding interactors of WAK1, negatively affect defense responses induced by oligogalacturonides and local response to wounding. Journal of Experimental Botany, 2016, 67, 1715-1729.	2.4	77
46	Targeted Mutants of Cochliobolus carbonum Lacking the Two Major Extracellular Polygalacturonases. Applied and Environmental Microbiology, 1998, 64, 1497-1503.	1.4	76
47	Cloning and characterization of a gene encoding the endopolygalacturonase of Fusarium moniliforme. Mycological Research, 1993, 97, 497-505.	2.5	72
48	Oligogalacturonide-Auxin Antagonism Does Not Require Posttranscriptional Gene Silencing or Stabilization of Auxin Response Repressors in Arabidopsis Â. Plant Physiology, 2011, 157, 1163-1174.	2.3	72
49	The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 Regulates the Cross Talk between Immunity and Abscisic Acid Responses Â. Plant Physiology, 2014, 165, 262-276.	2.3	71
50	Mutagenesis of Endopolygalacturonase from <i>Fusarium moniliforme:</i> Histidine Residue 234 Is Critical for Enzymatic and Macerating Activities and Not for Binding to Polygalacturonase-Inhibiting Protein (PGIP). Molecular Plant-Microbe Interactions, 1996, 9, 617.	1.4	69
51	Integration of evolutionary and desolvation energy analysis identifies functional sites in a plant immunity protein. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7666-7671.	3.3	68
52	Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. Plant Journal, 2011, 65, 295-308.	2.8	66
53	Identification by 2â€Ð DIGE of apoplastic proteins regulated by oligogalacturonides in <i>Arabidopsis thaliana</i> . Proteomics, 2008, 8, 1042-1054.	1.3	63
54	A Polygalacturonase-Inhibiting Protein in the Flowers of Phaseolus vulgaris L Journal of Plant Physiology, 1990, 136, 513-518.	1.6	60

#	Article	IF	CITATIONS
55	Targeted Modification of Homogalacturonan by Transgenic Expression of a Fungal Polygalacturonase Alters Plant Growth. Plant Physiology, 2004, 135, 1294-1304.	2.3	59
56	Expression and localization of polygalacturonase during the outgrowth of lateral roots in Allium porrum L. Planta, 1992, 188, 164-172.	1.6	58
57	A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus x domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Molecular Biology, 1999, 40, 945-957.	2.0	58
58	The Arabidopsis NUCLEUS- AND PHRAGMOPLAST-LOCALIZED KINASE1-Related Protein Kinases Are Required for Elicitor-Induced Oxidative Burst and Immunity. Plant Physiology, 2014, 165, 1188-1202.	2.3	57
59	Fusarium moniliforme secretes four endopolygalacturonases derived from a single gene product. Physiological and Molecular Plant Pathology, 1993, 43, 453-462.	1.3	56
60	Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera). Plant Cell Reports, 2006, 25, 1166-1173.	2.8	56
61	The Arabidopsis thaliana Class III Peroxidase AtPRX71 Negatively Regulates Growth under Physiological Conditions and in Response to Cell Wall Damage Plant Physiology, 2015, 169, pp.01464.2015.	2.3	56
62	Antisense phenotypes reveal a role for SHY, a pollen-specific leucine-rich repeat protein, in pollen tube growth. Plant Journal, 2004, 39, 643-654.	2.8	55
63	Cytological localization of thePGIP genes in the embryo suspensor cells ofPhaseolus vulgavis L. Theoretical and Applied Genetics, 1993, 87, 369-373.	1.8	54
64	The Polygalacturonase-Inhibiting Protein PGIP2 of Phaseolus vulgaris Has Evolved a Mixed Mode of Inhibition of Endopolygalacturonase PG1 of Botrytis cinerea. Plant Physiology, 2005, 139, 1380-1388.	2.3	53
65	A Specific Ascorbate Free Radical Reductase Isozyme Participates in the Regeneration of Ascorbate for Scavenging Toxic Oxygen Species in Potato Tuber Mitochondria. Plant Physiology, 1995, 109, 847-851.	2.3	51
66	An oligogalacturonideâ€derived molecular probe demonstrates the dynamics of calciumâ€mediated pectin complexation in cell walls of tipâ€growing structures. Plant Journal, 2017, 91, 534-546.	2.8	50
67	Crystal structure of the endopolygalacturonase from the phytopathogenic fungus <i>Colletotrichum lupini</i> and its interaction with polygalacturonaseâ€inhibiting proteins. Proteins: Structure, Function and Bioinformatics, 2008, 70, 294-299.	1.5	45
68	The promoter of a gene encoding a polygalacturonase-inhibiting protein of Phaseolus vulgaris L. is activated by wounding but not by elicitors or pathogen infection. Planta, 1998, 205, 165-174.	1.6	44
69	Analysis of pectin mutants and natural accessions of Arabidopsis highlights the impact of de-methyl-esterified homogalacturonan on tissue saccharification. Biotechnology for Biofuels, 2013, 6, 163.	6.2	44
70	Activity of endo-polygalacturonases in mirid bugs (Heteroptera: Miridae) and their inhibition by plant cell wall proteins (PGIPs). European Journal of Entomology, 2006, 103, 515-522.	1.2	44
71	Differential accumulation of PGIP (polygalacturonase-inhibiting protein) mRNA in two near-isogenic lines ofPhaseolus vulgarisL. upon infection withColletotrichum lindemuthianum. Physiological and Molecular Plant Pathology, 1996, 48, 83-89.	1.3	43
72	Oligogalacturonides stimulate pericycle cell wall thickening and cell divisions leading to stoma formation in tobacco leaf explants. Planta, 1998, 204, 429-436.	1.6	43

#	Article	IF	CITATIONS
73	Oligogalacturonides inhibit the induction of late but not of early auxin-responsive genes in tobacco. Planta, 2002, 215, 494-501.	1.6	43
74	Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 1107.	1.7	43
75	Host-derived signals activate plant innate immunity. Plant Signaling and Behavior, 2009, 4, 33-34.	1.2	42
76	Immune responses induced by oligogalacturonides are differentially affected by AvrPto and loss of BAK1/BKK1 and PEPR1/PEPR2. Molecular Plant Pathology, 2017, 18, 582-595.	2.0	42
77	Host-pathogen interactions. XXXVII. Abilities of the Polygalacturonase-inhibiting proteins from four cultivars of Phaseolus vulgaris to inhibit the endopolygalacturonases from three races of Colletotrichum lindemuthianum. Physiological and Molecular Plant Pathology, 1990, 36, 421-435.	1.3	41
78	Dampening the DAMPs: How Plants Maintain the Homeostasis of Cell Wall Molecular Patterns and Avoid Hyper-Immunity. Frontiers in Plant Science, 2020, 11, 613259.	1.7	39
79	Structural Resolution of the Complex between a Fungal Polygalacturonase and a Plant Polygalacturonase-Inhibiting Protein by Small-Angle X-Ray Scattering Â. Plant Physiology, 2011, 157, 599-607.	2.3	38
80	Elicitation of phenylalanine ammonia-lyase in Daucus carota by oligogalacturonides released from sodium polypectate by homogeneous polygalacturonase. Plant Science, 1987, 51, 147-150.	1.7	36
81	Roots drive oligogalacturonideâ€induced systemic immunity in tomato. Plant, Cell and Environment, 2021, 44, 275-289.	2.8	35
82	A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance against Rhizoctonia solani and two oomycetes. Frontiers in Plant Science, 2012, 3, 268.	1.7	34
83	Developmental and pathogen-induced accumulation of transcripts of polygalacturonase-inhibiting protein in Phaseolus vulgaris L Planta, 1997, 202, 284-292.	1.6	32
84	Bacterial endopectate lyase: evidence that plant cell wall pH prevents tissue maceration and increases the half-life of elicitor-active oligogalacturonides. Physiological and Molecular Plant Pathology, 1991, 39, 335-344.	1.3	31
85	A lower content of de-methylesterified homogalacturonan improves enzymatic cell separation and isolation of mesophyll protoplasts in Arabidopsis. Phytochemistry, 2015, 112, 188-194.	1.4	29
86	Arabidopsis thaliana Response to Extracellular DNA: Self Versus Nonself Exposure. Plants, 2021, 10, 1744.	1.6	28
87	Sensitive detection and measurement of oligogalacturonides in Arabidopsis. Frontiers in Plant Science, 2015, 06, 258.	1.7	26
88	A Polygalacturonase-Inhibiting Protein in Alfalfa Callus Cultures. Journal of Plant Physiology, 1988, 133, 364-366.	1.6	24
89	A Single Amino-Acid Substitution Allows Endo-Polygalacturonase of Fusarium verticillioides to Acquire Recognition by PGIP2 from Phaseolus vulgaris. PLoS ONE, 2013, 8, e80610.	1.1	23
90	The bean polygalacturonase-inhibiting protein 2 (PvPGIP2) is highly conserved in common bean (Phaseolus vulgaris L.) germplasm and related species. Theoretical and Applied Genetics, 2009, 118, 1371-1379.	1.8	22

#	Article	IF	CITATIONS
91	The <i>Arabidopsis thaliana</i> LysMâ€containing Receptorâ€Like Kinase 2 is required for elicitorâ€induced resistance to pathogens. Plant, Cell and Environment, 2021, 44, 3775-3792.	2.8	22
92	Polygalacturonase-Inhibiting Proteins (PGIPs): Their Role in Specificity and Defense against Pathogenic Fungi. , 1997, , 76-93.		22
93	An EFRâ€Cfâ€9 chimera confers enhanced resistance to bacterial pathogens by SOBIR1―and BAK1â€dependent recognition of elf18. Molecular Plant Pathology, 2019, 20, 751-764.	2.0	19
94	Regulation of the grapevine polygalacturonase-inhibiting protein encoding gene: expression pattern, induction profile and promoter analysis. Journal of Plant Research, 2013, 126, 267-281.	1.2	17
95	Molecular dissection of Phaseolus vulgaris polygalacturonase-inhibiting protein 2 reveals the presence of hold/release domains affecting protein trafficking toward the cell wall. Frontiers in Plant Science, 2015, 6, 660.	1.7	17
96	Changes in the microsomal proteome of tomato fruit during ripening. Scientific Reports, 2019, 9, 14350.	1.6	17
97	Oligogalacturonides Prevent Rhizogenesis in rolB-Transformed Tobacco Explants by Inhibiting Auxin-Induced Expression of the rolB Gene. Plant Cell, 1996, 8, 477.	3.1	16
98	Dynamic protein trafficking to the cell wall. Plant Signaling and Behavior, 2011, 6, 1012-1015.	1.2	15
99	The pgip family in soybean and three other legume species: evidence for a birth-and-death model of evolution. BMC Plant Biology, 2014, 14, 189.	1.6	15
100	Characterization of a membrane-associated apoplastic lipoxygenase in Phaseolus vulgaris L Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1748, 9-19.	1.1	14
101	Plant immunity by damage-associated molecular patterns (DAMPs). Essays in Biochemistry, 2022, 66, 459-469.	2.1	13
102	Recognition and signalling in the cell wall: The case of endopolygalacturonase, PGIP and oligogalacturonides. Plant Biosystems, 2005, 139, 24-27.	0.8	12
103	Wound healing response and xylem differentiation in tobacco plants over-expressing a fungal endopolygalacturonase is mediated by copper amine oxidase activity. Plant Physiology and Biochemistry, 2014, 82, 54-65.	2.8	12
104	CesA6 and PGIP2 Endocytosis Involves Different Subpopulations of TGN-Related Endosomes. Frontiers in Plant Science, 2020, 11, 350.	1.7	12
105	The plasma membrane–associated Ca ²⁺ â€binding protein, <scp>PCaP1,</scp> is required for oligogalacturonide and flagellinâ€induced priming and immunity. Plant, Cell and Environment, 2021, 44, 3078-3093.	2.8	12
106	Reclassification of Fusarium verticillioides (syn. F. moniliforme) strain FC-10 as F. phyllophilum. Mycological Research, 2008, 112, 1010-1.	2.5	12
107	The intracellular <scp>ROS</scp> accumulation in elicitorâ€induced immunity requires the multiple organelleâ€targeted Arabidopsis <scp>NPK1</scp> â€related protein kinases. Plant, Cell and Environment, 2021, 44, 931-947.	2.8	11
108	Oligogalacturonide-induced changes in the nuclear proteome of Arabidopsis thaliana. International Journal of Mass Spectrometry, 2007, 268, 277-283.	0.7	10

#	Article	IF	CITATIONS
109	AIR12, a b -type cytochrome of the plasma membrane of Arabidopsis thaliana is a negative regulator of resistance against Botrytis cinerea. Plant Science, 2015, 233, 32-43.	1.7	10
110	Loss of the Arabidopsis Protein Kinases ANPs Affects Root Cell Wall Composition, and Triggers the Cell Wall Damage Syndrome. Frontiers in Plant Science, 2018, 8, 2234.	1.7	10
111	Impaired Cuticle Functionality and Robust Resistance to Botrytis cinerea in Arabidopsis thaliana Plants With Altered Homogalacturonan Integrity Are Dependent on the Class III Peroxidase AtPRX71. Frontiers in Plant Science, 2021, 12, 696955.	1.7	9
112	The role of polygalacturonase, PGIP and pectin oligomers in fungal infection. Progress in Biotechnology, 1996, , 191-205.	0.2	8
113	Enhancing immunity by engineering DAMPs. Oncotarget, 2015, 6, 28523-28524.	0.8	7
114	Isolation and characterization of pectin inducible cDNA clones from the phytopathogenic fungus Fusarium moniliforme. Mycological Research, 1990, 94, 635-640.	2.5	5
115	Generation of transgenic sugar beet (Beta vulgarism L.) overexpressing the polygalacturonase inhibiting protein 1 of Phaseolus vulgaris (PvPGIP1) through Agrobacterium-mediated transformation. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2015, 39, 429-438.	0.8	5
116	Preliminary X-ray crystallographic analysis of a plant defence protein, the polygalacturonase-inhibiting protein from Phaseolus vulgaris. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 98-100.	2.5	4
117	Extracellular Accumulation of an Auxin-regulated Protein in Phaseolus vulgaris L. Cells is Inhibited by Oligogalacturonides. Journal of Plant Physiology, 1995, 147, 367-370.	1.6	3
118	Studies on plant inhibitors of pectin modifying enzymes: Polygalacturonase-inhibiting protein (PGIP) and pectin methylesterase inhibtior (PMEI). Special Publication - Royal Society of Chemistry, 0, , 160-168.	0.0	2
119	La Poligalatturonasi, La PGIP E Cli Oligogalatturonidi Nella Comunicazione Tra Piante E Funghi Fitopatogeni. Giornale Botanico Italiano (Florence, Italy: 1962), 1994, 128, 506-519.	0.0	Ο
120	Extracellular Accumulation of an Auxin-Regulated Protein in <i>Phaseolus Vulgaris</i> L. Cells is Inhibited by Oligogalacturonides. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 994-995.	0.0	0
121	The accumulation of PGIP is correlated with the hypersensitive response in racecultivar interactions. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 1130-1131.	0.0	0
122	Analysis of the interaction between PGIP from Phaseolus vulgaris L. and fungal endopolygalacturonases using biosensor technology. Progress in Biotechnology, 1996, 14, 775-782.	0.2	0