Yoav Finer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212816/publications.pdf Version: 2024-02-01

YOAV FINED

#	Article	IF	CITATIONS
1	Simulating the Intraoral Aging of Dental Bonding Agents: A Narrative Review. Dentistry Journal, 2022, 10, 13.	2.3	5
2	Interfacial Biomaterial–Dentin Bacterial Biofilm Proliferation and Viability Is Affected by the Material, Aging Media and Period. Dentistry Journal, 2022, 10, 33.	2.3	0
3	Drug-Silica Coassembled Particles Improve Antimicrobial Properties of Endodontic Sealers. Journal of Endodontics, 2021, 47, 793-799.	3.1	9
4	Assessment of Root Canal Sealers Loaded with Drug-Silica Coassembled Particles Using an InÂVitro Tooth Model. Journal of Endodontics, 2021, 47, 1775-1782.	3.1	2
5	Effect of processing methods on the cytotoxicity of methyl methacrylate-based ocular prostheses: An in vitro study. Toxicology in Vitro, 2021, 76, 105211.	2.4	Ο
6	Minimally Invasive Therapies for the Management of Dental Caries—A Literature Review. Dentistry Journal, 2021, 9, 147.	2.3	22
7	Human neutrophils compromise the restoration-tooth interface. Acta Biomaterialia, 2020, 117, 283-293.	8.3	10
8	Antimicrobial antidegradative dental adhesive preserves restoration-tooth bond. Dental Materials, 2020, 36, 1666-1679.	3.5	8
9	Genetic Analysis of Mutacin B-Ny266, a Lantibiotic Active against Caries Pathogens. Journal of Bacteriology, 2020, 202, .	2.2	9
10	Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement. Dental Materials, 2019, 35, 1545-1556.	3.5	24
11	Esterases affect the physical properties of materials used to seal the endodontic space. Dental Materials, 2019, 35, 1065-1072.	3.5	12
12	Human neutrophils degrade methacrylate resin composites and tooth dentin. Acta Biomaterialia, 2019, 88, 325-331.	8.3	21
13	Physical properties and cytotoxicity of antimicrobial dental resin adhesives containing dimethacrylate oligomers of Ciprofloxacin and Metronidazole. Dental Materials, 2019, 35, 229-243.	3.5	10
14	Biostable, antidegradative and antimicrobial restorative systems based on host-biomaterials and microbial interactions. Dental Materials, 2019, 35, 36-52.	3.5	54
15	Endodontic pathogens possess collagenolytic properties that degrade human dentine collagen matrix. International Endodontic Journal, 2019, 52, 416-423.	5.0	16
16	Esterase from a cariogenic bacterium hydrolyzes dental resins. Acta Biomaterialia, 2018, 71, 330-338.	8.3	72
17	Enterococcus faecalis Hydrolyzes Dental Resin Composites and Adhesives. Journal of Endodontics, 2018, 44, 609-613.	3.1	23
18	Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles. Scientific Reports, 2018, 8, 895.	3.3	56

Yoav Finer

#	Article	IF	CITATIONS
19	Gene expression and protein synthesis of esterase from Streptococcus mutans are affected by biodegradation by-product from methacrylate resin composites and adhesives. Acta Biomaterialia, 2018, 81, 158-168.	8.3	37
20	Biodegradation of resin–dentin interfaces is dependent on the restorative material, mode of adhesion, esterase or MMP inhibition. Dental Materials, 2018, 34, 1253-1262.	3.5	44
21	Responsive antimicrobial dental adhesive based on drug-silica co-assembled particles. Acta Biomaterialia, 2018, 76, 283-294.	8.3	33
22	Biochemical Stability and Interactions of Dental Resin Composites and Adhesives with Host and Bacteria in the Oral Cavity: A Review. Journal of the Canadian Dental Association, 2018, 84, i1.	0.6	14
23	Mechanistic, genomic and proteomic study on the effects of BisGMA-derived biodegradation product on cariogenic bacteria. Dental Materials, 2017, 33, 175-190.	3.5	37
24	In Vivo Biodegradation of bisGMA and Urethane-Modified bisGMA-Based Resin Composite Materials. JDR Clinical and Translational Research, 2017, 2, 397-405.	1.9	16
25	Multi-Centre Clinical Evaluation of Photothermal Radiometry and Luminescence Correlated with International Benchmarks for Caries Detection. Open Dentistry Journal, 2017, 11, 636-647.	0.5	11
26	Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans. PLoS ONE, 2016, 11, e0165760.	2.5	41
27	Matrix metalloproteinase inhibitor modulates esterase-catalyzed degradation of resin–dentin interfaces. Dental Materials, 2016, 32, 1513-1523.	3.5	33
28	Biodegradation of resin composites and adhesives by oral bacteria and saliva: A rationale for new material designs that consider the clinical environment and treatment challenges. Dental Materials, 2014, 30, 16-32.	3.5	208
29	Cariogenic Bacteria Degrade Dental Resin Composites and Adhesives. Journal of Dental Research, 2013, 92, 989-994.	5.2	193
30	Microbial Biofilm Proliferation within Sealer–Root Dentin Interfaces Is Affected by Sealer Type and Aging Period. Journal of Endodontics, 2012, 38, 1253-1256.	3.1	21
31	Dental Composite Resins. , 2012, , 296-306.		0
32	Effect of salivary esterase on the integrity and fracture toughness of the dentinâ€resin interface. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 94B, 230-237.	3.4	49
33	Biodegradation of Resin-Dentin Interfaces Increases Bacterial Microleakage. Journal of Dental Research, 2010, 89, 996-1001.	5.2	133
34	Influence of silanated filler content on the biodegradation of bisGMA/TEGDMA dental composite resins. Journal of Biomedical Materials Research - Part A, 2007, 81A, 75-84.	4.0	57
35	Salivary Esterase Activity and Its Association with the Biodegradation of Dental Composites. Journal of Dental Research, 2004, 83, 22-26.	5.2	191
36	The influence of resin chemistry on a dental composite's biodegradation. Journal of Biomedical Materials Research Part B, 2004, 69A, 233-246.	3.1	124

Yoav Finer

#	Article	IF	CITATIONS
37	Mutual influence of cholesterol esterase and pseudocholinesterase on the biodegradation of dental composites. Biomaterials, 2004, 25, 1787-1793.	11.4	94
38	Biodegradation of a dental composite by esterases: dependence on enzyme concentration and specificity. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 837-849.	3.5	63
39	Interactions between resin monomers and commercial composite resins with human saliva derived esterases. Biomaterials, 2002, 23, 1707-1719.	11.4	115