
Naomi J Boxall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of biotechnology in iron ore beneficiation. , 2022, , 457-486.		1
2	Effect of Initial Cell Concentration on Bio-Oxidation of Pyrite before Gold Cyanidation. Minerals (Basel, Switzerland), 2021, 11, 834.	2.0	4
3	E-Waste Recycling and Resource Recovery: A Review on Technologies, Barriers and Enablers with a Focus on Oceania. Metals, 2021, 11, 1313.	2.3	64
4	A Comparison of Methods for the Characterisation of Waste-Printed Circuit Boards. Metals, 2021, 11, 1935.	2.3	12
5	Potential of metals leaching from printed circuit boards with biological and chemical lixiviants. Hydrometallurgy, 2020, 196, 105433.	4.3	29
6	Prospective directions for biohydrometallurgy. Hydrometallurgy, 2020, 195, 105376.	4.3	67
7	Recovery of Metals from Waste Lithium Ion Battery Leachates Using Biogenic Hydrogen Sulfide. Minerals (Basel, Switzerland), 2019, 9, 563.	2.0	24
8	Lithium battery recycling in Australia: defining the status and identifying opportunities for the development of a new industry. Journal of Cleaner Production, 2019, 215, 1279-1287.	9.3	68
9	Genome-based classification of two halotolerant extreme acidophiles, Acidihalobacter prosperus V6 (=DSM 14174 =JCM 32253) and 'Acidihalobacter ferrooxidans' V8 (=DSM 14175 =JCM 32254) as two new species, Acidihalobacter aeolianus sp. nov. and Acidihalobacter ferrooxydans sp. nov., respectively. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1557-1565.	1.7	25
10	Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant. Waste Management, 2018, 74, 435-445.	7.4	30
11	Chloride ion tolerance and pyrite bioleaching capabilities of pure and mixed halotolerant, acidophilic iron- and sulfur-oxidizing cultures. Minerals Engineering, 2018, 120, 87-93.	4.3	22
12	Increasing cell concentration does not affect specific ferrous iron oxidation rate in a continuously stirred tank bioreactor. Hydrometallurgy, 2018, 181, 189-194.	4.3	3
13	Urban mining of lithium-ion batteries in Australia: Current state and future trends. Minerals Engineering, 2018, 128, 45-55.	4.3	45
14	Recent progress in biohydrometallurgy and microbial characterisation. Hydrometallurgy, 2018, 180, 7-25.	4.3	137
15	Quantitative proteomics using SWATH-MS identifies mechanisms of chloride tolerance in the halophilic acidophile Acidihalobacter prosperus DSM 14174. Research in Microbiology, 2018, 169, 638-648.	2.1	10
16	In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes, 2018, 9, 116.	2.4	73
17	Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. Journal of Hazardous Materials, 2018, 360, 504-511.	12.4	81
18	Draft Genome Sequence of the Acidophilic, Halotolerant, and Iron/Sulfur-Oxidizing Acidihalobacter prosperus DSM 14174 (Strain V6). Genome Announcements, 2017, 5, .	0.8	15

NAOMI J BOXALL

#	Article	IF	CITATIONS
19	Complete genome sequence of Acidihalobacter prosperus strain F5, an extremely acidophilic, iron- and sulfur-oxidizing halophile with potential industrial applicability in saline water bioleaching of chalcopyrite. Journal of Biotechnology, 2017, 262, 56-59.	3.8	17
20	Biosolubilisation of Metals and Metalloids. Environmental Chemistry for A Sustainable World, 2017, , 233-283.	0.5	4
21	Draft Genome Sequence of <i>Acidihalobacter ferrooxidans</i> DSM 14175 (Strain V8), a New Iron- and Sulfur-Oxidizing, Halotolerant, Acidophilic Species. Genome Announcements, 2017, 5, .	0.8	6
22	Effect of high sulfate concentrations on chalcopyrite bioleaching and molecular characterisation of the bioleaching microbial community. Hydrometallurgy, 2017, 168, 32-39.	4.3	25
23	Preservation of salt-tolerant acidophiles used for chalcopyrite bioleaching: Assessment of cryopreservation, liquid-drying and cold storage. Minerals Engineering, 2017, 106, 91-96.	4.3	5
24	Chalcopyrite Bioleaching at High Sulfate Concentrations. Advanced Materials Research, 2015, 1130, 396-399.	0.3	0
25	Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce. Minerals Engineering, 2015, 75, 126-132.	4.3	40
26	Arsenic-interacting plant proteins as templates for arsenic specific flotation collectors? A review. Minerals Engineering, 2014, 64, 67-77.	4.3	3
27	Molecular characterisation of the microbial community of a full-scale bioreactor treating Bayer liquor organic waste. Minerals Engineering, 2011, 24, 1094-1099.	4.3	10
28	Comparison of microbial communities in pilot-scale bioreactors treating Bayer liquor organic wastes. Biodegradation, 2011, 22, 397-407.	3.0	10
29	Growth and activity of pure and mixed bioleaching strains on low grade chalcopyrite ore. Minerals Engineering, 2008, 21, 93-99.	4.3	49
30	Characterisation of Oxalate-Degrading Microorganisms in Bioreactors Treating Bayer Liquor Organic Materials. Advanced Materials Research, 0, 71-73, 129-132.	0.3	4
31	Characterisation of a Novel Genus of Oxalate-Degrading Beta- <i>Proteobacteria</i> Isolated from a Full-Scale Bioreactor Treating Bayer Liquor Organic Wastes. Advanced Materials Research, O, 825, 79-83.	0.3	2
32	Recent Advances in Biomining and Microbial Characterisation. Solid State Phenomena, 0, 262, 33-37.	0.3	5