Ryuji Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212545/publications.pdf

Version: 2024-02-01

623734 839539 20 892 14 18 citations g-index h-index papers 20 20 20 1484 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An Emerging Model for Cancer Development from a Tumor Microenvironment Perspective in Mice and Humans. Advances in Experimental Medicine and Biology, 2020, 1225, 19-29.	1.6	2
2	Targeting Mcl-1 and other Bcl-2 family member proteins in cancer therapy., 2019, 195, 13-20.		69
3	Animal models for studying tumor microenvironment (TME) and resistance to lymphocytic infiltration. Cancer Biology and Therapy, 2018, 19, 745-754.	3.4	22
4	Deconstructing Signaling Pathways in Cancer for Optimizing Cancer Combination Therapies. International Journal of Molecular Sciences, 2017, 18, 1258.	4.1	2
5	VHL-deficient renal cancer cells gain resistance to mitochondria-activating apoptosis inducers by activating AKT through the IGF1R-PI3K pathway. Tumor Biology, 2016, 37, 13295-13306.	1.8	10
6	Targeting cholesterol with $\hat{l}^2 \hat{a} \in \mathcal{E}$ yclodextrin sensitizes cancer cells for apoptosis. FEBS Letters, 2015, 589, 4097-4105.	2.8	28
7	Challenges in targeting cancer metabolism for cancer therapy. EMBO Reports, 2012, 13, 1034-1035.	4.5	14
8	Finding a Panacea among Combination Cancer Therapies. Cancer Research, 2012, 72, 18-23.	0.9	28
9	Mcl-1 levels need not be lowered for cells to be sensitized for ABT-263/737-induced apoptosis. Cell Death and Disease, 2011, 2, e227-e227.	6.3	11
10	Efficient Elimination of Cancer Cells by Deoxyglucose-ABT-263/737 Combination Therapy. PLoS ONE, 2011, 6, e24102.	2.5	65
11	Dynamics of mitochondrial structure during apoptosis and the enigma of Opa1. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 963-972.	1.0	52
12	Comparison of in Vitro Apoptotic Response of Chronic Lymphocytic Leukemia (CLL) Cells to Bcl-2 Antagonist ABT-737 and IAP Antagonist BV6 Blood, 2009, 114, 4386-4386.	1.4	0
13	Opa1-Mediated Cristae Opening Is Bax/Bak and BH3 Dependent, Required for Apoptosis, and Independent of Bak Oligomerization. Molecular Cell, 2008, 31, 557-569.	9.7	248
14	Mitochondria frozen with trehalose retain a number of biological functions and preserve outer membrane integrity. Cell Death and Differentiation, 2007, 14, 616-624.	11.2	94
15	A Role for Ran-GTP and Crm1 in Blocking Re-Replication. Cell, 2003, 113, 115-125.	28.9	45
16	Proteasome Inhibitors Alter the Orderly Progression of DNA Synthesis during S-Phase in HeLa Cells and Lead to Rereplication of DNA. Experimental Cell Research, 2000, 261, 271-283.	2.6	20
17	The Human Homolog of Saccharomyces cerevisiae CDC45. Journal of Biological Chemistry, 1998, 273, 18205-18209.	3.4	50
18	Mitosis specific serine phosphorylation and downregulation of one of the focal adhesion protein, paxillin. Oncogene, 1997, 15, 1753-1761.	5.9	50

#	#	Article	lF	CITATIONS
1	19	Paxillin association in vitro with integrin cytoplasmic domain peptides. FEBS Letters, 1996, 399, 53-58.	2.8	34
2	20	Unphosphorylated and tyrosine-phosphorylated forms of a focal adhesion protein, paxillin, are substrates for calpain II in vitro: Implications for the possible involvement of calpain II in mitosis-specific degradation of paxillin. FEBS Letters, 1994, 356, 114-116.	2.8	48