Habib Yaribeygi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212506/publications.pdf

Version: 2024-02-01

87	3,417	29 h-index	54
papers	citations		g-index
87	87	87	4361 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Astaxanthin and Nrf2 Signaling Pathway: A Novel Target for New Therapeutic Approaches. Mini-Reviews in Medicinal Chemistry, 2022, 22, 312-321.	1.1	8
2	Molecular mechanisms linking stress and insulin resistance EXCLI Journal, 2022, 21, 317-334.	0.5	1
3	GLP-1 mimetics and cognition. Life Sciences, 2021, 264, 118645.	2.0	32
4	Crocin Improves Oxidative Stress in Testicular Tissues of Streptozotocin-Induced Diabetic Rats. Advances in Experimental Medicine and Biology, 2021, 1308, 273-281.	0.8	1
5	Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. Advances in Experimental Medicine and Biology, 2021, 1308, 137-160.	0.8	4
6	Antioxidative Potentials of Incretin-Based Medications: A Review of Molecular Mechanisms. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-9.	1.9	9
7	Evaluation of Disease Severity and Health-Related Quality of Life in Patients with Rheumatoid Arthritis Undergoing Total Knee Arthroplasty. Current Rheumatology Reviews, 2021, 17, 88-94.	0.4	2
8	Obesity and Insulin Resistance: A Review of Molecular Interactions. Current Molecular Medicine, 2021, 21, 182-193.	0.6	14
9	The Effects of Glucagon-Like Peptide-1 Receptor Agonists and Dipeptydilpeptidase-4 Inhibitors on Blood Pressure and Cardiovascular Complications in Diabetes. Journal of Diabetes Research, 2021, 2021, 1-10.	1.0	9
10	Renoprotective Effects of Incretin-Based Therapy in Diabetes Mellitus. BioMed Research International, 2021, 2021, 1-7.	0.9	5
11	Pathophysiology of Physical Inactivity-Dependent Insulin Resistance: A Theoretical Mechanistic Review Emphasizing Clinical Evidence. Journal of Diabetes Research, 2021, 2021, 1-12.	1.0	16
12	Impact of Incretin-Based Therapies on Adipokines and Adiponectin. Journal of Diabetes Research, 2021, 2021, 1-9.	1.0	7
13	Boosting GLP-1 by Natural Products. Advances in Experimental Medicine and Biology, 2021, 1328, 513-522.	0.8	3
14	The Effects of Ginsenosides on the Nrf2 Signaling Pathway. Advances in Experimental Medicine and Biology, 2021, 1328, 307-322.	0.8	3
15	Natural Insulin Sensitizers for the Management of Diabetes Mellitus: A Review of Possible Molecular Mechanisms. Advances in Experimental Medicine and Biology, 2021, 1328, 401-410.	0.8	1
16	Naturally Occurring SGLT2 Inhibitors: A Review. Advances in Experimental Medicine and Biology, 2021, 1328, 523-530.	0.8	1
17	Crocin Improves Diabetes-Induced Oxidative Stress via Downregulating the Nox-4 in Myocardium of Diabetic Rats. Advances in Experimental Medicine and Biology, 2021, 1328, 275-285.	0.8	4
18	Renoprotective Roles of Curcumin. Advances in Experimental Medicine and Biology, 2021, 1328, 531-544.	0.8	4

#	Article	IF	Citations
19	Antitumor and Protective Effects of Melatonin: The Potential Roles of MicroRNAs. Advances in Experimental Medicine and Biology, 2021, 1328, 463-471.	0.8	4
20	The Impact of Incretin-Based Medications on Lipid Metabolism. Journal of Diabetes Research, 2021, 2021, 1-10.	1.0	12
21	Ceramides and diabetes mellitus: an update on the potential molecular relationships. Diabetic Medicine, 2020, 37, 11-19.	1.2	41
22	Neuromodulatory effects of anti-diabetes medications: A mechanistic review. Pharmacological Research, 2020, 152, 104611.	3.1	39
23	Anti-inflammatory potentials of incretin-based therapies used in the management of diabetes. Life Sciences, 2020, 241, 117152.	2.0	35
24	Molecular mechanisms by which SGLT2 inhibitors can induce insulin sensitivity in diabetic milieu: A mechanistic review. Life Sciences, 2020, 240, 117090.	2.0	54
25	The Impact of Diabetes Mellitus in COVID-19: A Mechanistic Review of Molecular Interactions. Journal of Diabetes Research, 2020, 2020, 1-9.	1.0	14
26	Incretin-based therapies and renin-angiotensin system: Looking for new therapeutic potentials in the diabetic milieu. Life Sciences, 2020, 256, 117916.	2.0	11
27	PPAR-α Agonist Fenofibrate Ameliorates Oxidative Stress in Testicular Tissue of Diabetic Rats. Critical Reviews in Eukaryotic Gene Expression, 2020, 30, 93-100.	0.4	10
28	Molecular Mechanisms by Which Imeglimin Improves Glucose Homeostasis. Journal of Diabetes Research, 2020, 2020, 1-5.	1.0	19
29	Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	323
30	MicroRNA-mediated regulation of Nrf2 signaling pathway: Implications in disease therapy and protection against oxidative stress. Life Sciences, 2020, 244, 117329.	2.0	41
31	The molecular mechanisms by which vitamin D improve glucose homeostasis: A mechanistic review. Life Sciences, 2020, 244, 117305.	2.0	35
32	Curcumin Therapeutic Modulation of the Wnt Signaling Pathway. Current Pharmaceutical Biotechnology, 2020, 21, 1006-1015.	0.9	28
33	Therapeutic Effects of Curcumin against Bladder Cancer: A Review of Possible Molecular Pathways. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 667-677.	0.9	12
34	Anti-Tumor Effects of Osthole on Different Malignant Tissues: A Review of Molecular Mechanisms. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 918-931.	0.9	14
35	A Review on the Effects of New Anti-Diabetic Drugs on Platelet Function. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2020, 20, 328-334.	0.6	20
36	Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug Discovery Today, 2019, 24, 256-262.	3.2	87

#	Article	IF	CITATIONS
37	Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways. Journal of Cellular Physiology, 2019, 234, 223-230.	2.0	97
38	A review of the molecular mechanisms of hyperglycemiaâ€induced free radical generation leading to oxidative stress. Journal of Cellular Physiology, 2019, 234, 1300-1312.	2.0	156
39	Effects of newly introduced antidiabetic drugs on autophagy. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 2445-2449.	1.8	33
40	The effect of C-peptide on diabetic nephropathy: A review of molecular mechanisms. Life Sciences, 2019, 237, 116950.	2.0	31
41	The major molecular mechanisms mediating the renoprotective effects of SGLT2 inhibitors: An update. Biomedicine and Pharmacotherapy, 2019, 120, 109526.	2.5	15
42	Molecular mechanisms by which GLP-1 RA and DPP-4i induce insulin sensitivity. Life Sciences, 2019, 234, 116776.	2.0	49
43	A response to "ln response to ‰Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways'― Journal of Cellular Physiology, 2019, 234, 9908-9909.	2.0	2
44	Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: Implications for lowering tissue damage. Life Sciences, 2019, 231, 116538.	2.0	17
45	Molecular mechanisms of trehalose in modulating glucose homeostasis in diabetes. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 2214-2218.	1.8	31
46	C1q/TNF-related protein-3 and glucose homeostasis. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 1923-1927.	1.8	9
47	Mechanistic effects of SGLT2 inhibition on blood pressure in diabetes. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 1679-1683.	1.8	11
48	Winglessâ€type inducible signaling pathway proteinâ€1 (WISP1) adipokine and glucose homeostasis. Journal of Cellular Physiology, 2019, 234, 16966-16970.	2.0	9
49	Natural compounds with DPPâ€4 inhibitory effects: Implications for the treatment of diabetes. Journal of Cellular Biochemistry, 2019, 120, 10909-10913.	1.2	14
50	Antiâ€inflammatory effects of resolvins in diabetic nephropathy: Mechanistic pathways. Journal of Cellular Physiology, 2019, 234, 14873-14882.	2.0	28
51	Metabolic effects of antidiabetic drugs on adipocytes and adipokine expression. Journal of Cellular Physiology, 2019, 234, 16987-16997.	2.0	24
52	Potential roles of microRNAs in redox state: An update. Journal of Cellular Biochemistry, 2019, 120, 1679-1684.	1.2	10
53	PPAR-α agonist fenofibrate potentiates antioxidative elements and improves oxidative stress of hepatic cells in streptozotocin-induced diabetic animals. Comparative Clinical Pathology, 2019, 28, 203-209.	0.3	7
54	Antioxidative potential of antidiabetic agents: A possible protective mechanism against vascular complications in diabetic patients. Journal of Cellular Physiology, 2019, 234, 2436-2446.	2.0	71

#	Article	IF	Citations
55	Molecular mechanisms by which aerobic exercise induces insulin sensitivity. Journal of Cellular Physiology, 2019, 234, 12385-12392.	2.0	51
56	Interleukinâ€18 and diabetic nephropathy: A review. Journal of Cellular Physiology, 2019, 234, 5674-5682.	2.0	74
57	A review of the antiâ€inflammatory properties of antidiabetic agents providing protective effects against vascular complications in diabetes. Journal of Cellular Physiology, 2019, 234, 8286-8294.	2.0	51
58	Mitochondrial dysfunction in diabetes and the regulatory roles of antidiabetic agents on the mitochondrial function. Journal of Cellular Physiology, 2019, 234, 8402-8410.	2.0	52
59	Sodium–glucose cotransporter inhibitors and oxidative stress: An update. Journal of Cellular Physiology, 2019, 234, 3231-3237.	2.0	99
60	A review of the molecular pathways mediating the improvement in diabetes mellitus following caloric restriction. Journal of Cellular Physiology, 2019, 234, 8436-8442.	2.0	9
61	Aerobic exercise can modulate the underlying mechanisms involved in the development of diabetic complications. Journal of Cellular Physiology, 2019, 234, 12508-12515.	2.0	23
62	Narrative review of the effects of antidiabetic drugs on albuminuria. Journal of Cellular Physiology, 2019, 234, 5786-5797.	2.0	16
63	Insulin resistance: Review of the underlying molecular mechanisms. Journal of Cellular Physiology, 2019, 234, 8152-8161.	2.0	499
64	Protective effects of plantâ€derived natural products on renal complications. Journal of Cellular Physiology, 2019, 234, 12161-12172.	2.0	28
65	Antidiabetic potential of saffron and its active constituents. Journal of Cellular Physiology, 2019, 234, 8610-8617.	2.0	41
66	Crocin Improves Oxidative Stress by Potentiating Intrinsic Anti-Oxidant Defense Systems in Pancreatic Cells During Uncontrolled Hyperglycemia. Journal of Pharmacopuncture, 2019, 22, 83-89.	0.4	15
67	PPAR-α Agonist Improves Hyperglycemia-Induced Oxidative Stress in Pancreatic Cells by Potentiating Antioxidant Defense System. Drug Research, 2018, 68, 355-360.	0.7	32
68	Crocin potentiates antioxidant defense system and improves oxidative damage in liver tissue in diabetic rats. Biomedicine and Pharmacotherapy, 2018, 98, 333-337.	2.5	81
69	Effects of atorvastatin on myocardial oxidative and nitrosative stress in diabetic rats. Comparative Clinical Pathology, 2018, 27, 691-697.	0.3	17
70	Crocin improves renal function by declining Noxâ€4, ILâ€18, and p53 expression levels in an experimental model of diabetic nephropathy. Journal of Cellular Biochemistry, 2018, 119, 6080-6093.	1.2	85
71	Oxidative stress induces renal failure: A review of possible molecular pathways. Journal of Cellular Biochemistry, 2018, 119, 2990-2998.	1.2	66
72	Fenofibrate improves renal function by amelioration of NOXâ€4, ILâ€18, and p53 expression in an experimental model of diabetic nephropathy. Journal of Cellular Biochemistry, 2018, 119, 7458-7469.	1.2	51

#	Article	IF	Citations
73	MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism: Clinical and Experimental, 2018, 87, 48-55.	1.5	65
74	Physiological/Neurophysiological Mechanisms Involved in the Formation of Stress Responses. Neurophysiology, 2018, 50, 131-139.	0.2	9
75	The Underlying Role of Oxidative Stress in Neurodegeneration: A Mechanistic Review. CNS and Neurological Disorders - Drug Targets, 2018, 17, 207-215.	0.8	86
76	Bilateral Facial Paralysis and Otitis Media as the First Presentations of Wegener's Granulomatosis: A Case Report. Hospital Practices and Research, 2017, 2, 125-127.	0.1	1
77	The impact of stress on body function: A review. EXCLI Journal, 2017, 16, 1057-1072.	0.5	385
78	Evaluation of PPAR- \hat{l}_{\pm} Agonist effect on Kidney Performance Through Increment of Nitric Oxide During Hyperglycemia-Induced Nephropathy in Rat. Razavi International Journal of Medicine, 2016, 4, .	0.1	1
79	Intensity and prevalence of source of stress in Iran. PizhÅ«hish-i SalÄmat, 2016, 1, 1-2.	0.2	5
80	Diabetes and Role of Exercise on its Control; A systematic Review. Pizhūhish-i Salĕmat, 2016, 1, 113-121.	0.2	5
81	The Effect of Interventional Factors Affecting on the Incidence of Thrombophlebitis in Patients with Peripheral Intravenous Catheter. PizhÅ«hish-i SalÄmat, 2016, 1, 1-2.	0.2	0
82	Individual and community values conflict with the approach of cognitive science and reduction strategies to increase mental health; an opinion study. Pizhå«hish-i Salämat, 2016, 1, 123-131.	0.2	0
83	Routine Offered Protocol is not reliable for Thrombophlebitis Prevention. Hospital Practices and Research, 2016, 1, 41-44.	0.1	1
84	Concomitant ligamentous and meniscal knee injuries in femoral shaft fracture. Journal of Orthopaedics and Traumatology, 2014, 15, 35-39.	1.0	12
85	Effects of Preoperative Use of Oral Dextromethorphan on Postoperative Need for Analgesics in Patients With Knee Arthroscopy. Anesthesiology and Pain Medicine, 2013, 3, e11187.	0.5	11
86	Knee Flexion Strength Before and After ACL Reconstruction Using Hamstring Tendon Autografts. Trauma Monthly, 2013, 18, 130-133.	0.2	7
87	Evaluation of Vicarious PTSD among Children of Sardasht Chemical Warfare Survivors 20 Years after Iran-Iraq War. Journal of Applied Sciences, 2010, 10, 3111-3116.	0.1	2