
Habib Yaribeygi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insulin resistance: Review of the underlying molecular mechanisms. Journal of Cellular Physiology, 2019, 234, 8152-8161.	2.0	499
2	The impact of stress on body function: A review. EXCLI Journal, 2017, 16, 1057-1072.	0.5	385
3	Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	323
4	A review of the molecular mechanisms of hyperglycemiaâ€induced free radical generation leading to oxidative stress. Journal of Cellular Physiology, 2019, 234, 1300-1312.	2.0	156
5	Sodium–glucose cotransporter inhibitors and oxidative stress: An update. Journal of Cellular Physiology, 2019, 234, 3231-3237.	2.0	99
6	Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways. Journal of Cellular Physiology, 2019, 234, 223-230.	2.0	97
7	Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug Discovery Today, 2019, 24, 256-262.	3.2	87
8	The Underlying Role of Oxidative Stress in Neurodegeneration: A Mechanistic Review. CNS and Neurological Disorders - Drug Targets, 2018, 17, 207-215.	0.8	86
9	Crocin improves renal function by declining Noxâ€4, ILâ€18, and p53 expression levels in an experimental model of diabetic nephropathy. Journal of Cellular Biochemistry, 2018, 119, 6080-6093.	1.2	85
10	Crocin potentiates antioxidant defense system and improves oxidative damage in liver tissue in diabetic rats. Biomedicine and Pharmacotherapy, 2018, 98, 333-337.	2.5	81
11	Interleukinâ€18 and diabetic nephropathy: A review. Journal of Cellular Physiology, 2019, 234, 5674-5682.	2.0	74
12	Antioxidative potential of antidiabetic agents: A possible protective mechanism against vascular complications in diabetic patients. Journal of Cellular Physiology, 2019, 234, 2436-2446.	2.0	71
13	Oxidative stress induces renal failure: A review of possible molecular pathways. Journal of Cellular Biochemistry, 2018, 119, 2990-2998.	1.2	66
14	MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism: Clinical and Experimental, 2018, 87, 48-55.	1.5	65
15	Molecular mechanisms by which SGLT2 inhibitors can induce insulin sensitivity in diabetic milieu: A mechanistic review. Life Sciences, 2020, 240, 117090.	2.0	54
16	Mitochondrial dysfunction in diabetes and the regulatory roles of antidiabetic agents on the mitochondrial function. Journal of Cellular Physiology, 2019, 234, 8402-8410.	2.0	52
17	Fenofibrate improves renal function by amelioration of NOXâ€4, ILâ€18, and p53 expression in an experimental model of diabetic nephropathy. Journal of Cellular Biochemistry, 2018, 119, 7458-7469.	1.2	51
18	Molecular mechanisms by which aerobic exercise induces insulin sensitivity. Journal of Cellular Physiology, 2019, 234, 12385-12392.	2.0	51

#	Article	IF	CITATIONS
19	A review of the antiâ€inflammatory properties of antidiabetic agents providing protective effects against vascular complications in diabetes. Journal of Cellular Physiology, 2019, 234, 8286-8294.	2.0	51
20	Molecular mechanisms by which GLP-1 RA and DPP-4i induce insulin sensitivity. Life Sciences, 2019, 234, 116776.	2.0	49
21	Antidiabetic potential of saffron and its active constituents. Journal of Cellular Physiology, 2019, 234, 8610-8617.	2.0	41
22	Ceramides and diabetes mellitus: an update on the potential molecular relationships. Diabetic Medicine, 2020, 37, 11-19.	1.2	41
23	MicroRNA-mediated regulation of Nrf2 signaling pathway: Implications in disease therapy and protection against oxidative stress. Life Sciences, 2020, 244, 117329.	2.0	41
24	Neuromodulatory effects of anti-diabetes medications: A mechanistic review. Pharmacological Research, 2020, 152, 104611.	3.1	39
25	Anti-inflammatory potentials of incretin-based therapies used in the management of diabetes. Life Sciences, 2020, 241, 117152.	2.0	35
26	The molecular mechanisms by which vitamin D improve glucose homeostasis: A mechanistic review. Life Sciences, 2020, 244, 117305.	2.0	35
27	Effects of newly introduced antidiabetic drugs on autophagy. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 2445-2449.	1.8	33
28	PPAR-α Agonist Improves Hyperglycemia-Induced Oxidative Stress in Pancreatic Cells by Potentiating Antioxidant Defense System. Drug Research, 2018, 68, 355-360.	0.7	32
29	GLP-1 mimetics and cognition. Life Sciences, 2021, 264, 118645.	2.0	32
30	The effect of C-peptide on diabetic nephropathy: A review of molecular mechanisms. Life Sciences, 2019, 237, 116950.	2.0	31
31	Molecular mechanisms of trehalose in modulating glucose homeostasis in diabetes. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 2214-2218.	1.8	31
32	Antiâ€inflammatory effects of resolvins in diabetic nephropathy: Mechanistic pathways. Journal of Cellular Physiology, 2019, 234, 14873-14882.	2.0	28
33	Protective effects of plantâ€derived natural products on renal complications. Journal of Cellular Physiology, 2019, 234, 12161-12172.	2.0	28
34	Curcumin Therapeutic Modulation of the Wnt Signaling Pathway. Current Pharmaceutical Biotechnology, 2020, 21, 1006-1015.	0.9	28
35	Metabolic effects of antidiabetic drugs on adipocytes and adipokine expression. Journal of Cellular Physiology, 2019, 234, 16987-16997.	2.0	24
36	Aerobic exercise can modulate the underlying mechanisms involved in the development of diabetic complications. Journal of Cellular Physiology, 2019, 234, 12508-12515.	2.0	23

#	Article	IF	CITATIONS
37	A Review on the Effects of New Anti-Diabetic Drugs on Platelet Function. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2020, 20, 328-334.	0.6	20
38	Molecular Mechanisms by Which Imeglimin Improves Glucose Homeostasis. Journal of Diabetes Research, 2020, 2020, 1-5.	1.0	19
39	Effects of atorvastatin on myocardial oxidative and nitrosative stress in diabetic rats. Comparative Clinical Pathology, 2018, 27, 691-697.	0.3	17
40	Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: Implications for lowering tissue damage. Life Sciences, 2019, 231, 116538.	2.0	17
41	Narrative review of the effects of antidiabetic drugs on albuminuria. Journal of Cellular Physiology, 2019, 234, 5786-5797.	2.0	16
42	Pathophysiology of Physical Inactivity-Dependent Insulin Resistance: A Theoretical Mechanistic Review Emphasizing Clinical Evidence. Journal of Diabetes Research, 2021, 2021, 1-12.	1.0	16
43	The major molecular mechanisms mediating the renoprotective effects of SGLT2 inhibitors: An update. Biomedicine and Pharmacotherapy, 2019, 120, 109526.	2.5	15
44	Crocin Improves Oxidative Stress by Potentiating Intrinsic Anti-Oxidant Defense Systems in Pancreatic Cells During Uncontrolled Hyperglycemia. Journal of Pharmacopuncture, 2019, 22, 83-89.	0.4	15
45	Natural compounds with DPPâ€4 inhibitory effects: Implications for the treatment of diabetes. Journal of Cellular Biochemistry, 2019, 120, 10909-10913.	1.2	14
46	The Impact of Diabetes Mellitus in COVID-19: A Mechanistic Review of Molecular Interactions. Journal of Diabetes Research, 2020, 2020, 1-9.	1.0	14
47	Obesity and Insulin Resistance: A Review of Molecular Interactions. Current Molecular Medicine, 2021, 21, 182-193.	0.6	14
48	Anti-Tumor Effects of Osthole on Different Malignant Tissues: A Review of Molecular Mechanisms. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 918-931.	0.9	14
49	Concomitant ligamentous and meniscal knee injuries in femoral shaft fracture. Journal of Orthopaedics and Traumatology, 2014, 15, 35-39.	1.0	12
50	Therapeutic Effects of Curcumin against Bladder Cancer: A Review of Possible Molecular Pathways. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 667-677.	0.9	12
51	The Impact of Incretin-Based Medications on Lipid Metabolism. Journal of Diabetes Research, 2021, 2021, 1-10.	1.0	12
52	Mechanistic effects of SGLT2 inhibition on blood pressure in diabetes. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 1679-1683.	1.8	11
53	Incretin-based therapies and renin-angiotensin system: Looking for new therapeutic potentials in the diabetic milieu. Life Sciences, 2020, 256, 117916.	2.0	11
54	Effects of Preoperative Use of Oral Dextromethorphan on Postoperative Need for Analgesics in Patients With Knee Arthroscopy. Anesthesiology and Pain Medicine, 2013, 3, e11187.	0.5	11

#	Article	IF	CITATIONS
55	Potential roles of microRNAs in redox state: An update. Journal of Cellular Biochemistry, 2019, 120, 1679-1684.	1.2	10
56	PPAR-α Agonist Fenofibrate Ameliorates Oxidative Stress in Testicular Tissue of Diabetic Rats. Critical Reviews in Eukaryotic Gene Expression, 2020, 30, 93-100.	0.4	10
57	Physiological/Neurophysiological Mechanisms Involved in the Formation of Stress Responses. Neurophysiology, 2018, 50, 131-139.	0.2	9
58	C1q/TNF-related protein-3 and glucose homeostasis. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 1923-1927.	1.8	9
59	Winglessâ€ŧype inducible signaling pathway proteinâ€┨ (WISP1) adipokine and glucose homeostasis. Journal of Cellular Physiology, 2019, 234, 16966-16970.	2.0	9
60	A review of the molecular pathways mediating the improvement in diabetes mellitus following caloric restriction. Journal of Cellular Physiology, 2019, 234, 8436-8442.	2.0	9
61	Antioxidative Potentials of Incretin-Based Medications: A Review of Molecular Mechanisms. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-9.	1.9	9
62	The Effects of Glucagon-Like Peptide-1 Receptor Agonists and Dipeptydilpeptidase-4 Inhibitors on Blood Pressure and Cardiovascular Complications in Diabetes. Journal of Diabetes Research, 2021, 2021, 1-10.	1.0	9
63	Astaxanthin and Nrf2 Signaling Pathway: A Novel Target for New Therapeutic Approaches. Mini-Reviews in Medicinal Chemistry, 2022, 22, 312-321.	1.1	8
64	PPAR-α agonist fenofibrate potentiates antioxidative elements and improves oxidative stress of hepatic cells in streptozotocin-induced diabetic animals. Comparative Clinical Pathology, 2019, 28, 203-209.	0.3	7
65	Knee Flexion Strength Before and After ACL Reconstruction Using Hamstring Tendon Autografts. Trauma Monthly, 2013, 18, 130-133.	0.2	7
66	Impact of Incretin-Based Therapies on Adipokines and Adiponectin. Journal of Diabetes Research, 2021, 2021, 1-9.	1.0	7
67	Renoprotective Effects of Incretin-Based Therapy in Diabetes Mellitus. BioMed Research International, 2021, 2021, 1-7.	0.9	5
68	Intensity and prevalence of source of stress in Iran. PizhÅ«hish-i SalÄmat, 2016, 1, 1-2.	0.2	5
69	Diabetes and Role of Exercise on its Control; A systematic Review. PizhÅ«hish-i SalÄmat, 2016, 1, 113-121.	0.2	5
70	Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. Advances in Experimental Medicine and Biology, 2021, 1308, 137-160.	0.8	4
71	Crocin Improves Diabetes-Induced Oxidative Stress via Downregulating the Nox-4 in Myocardium of Diabetic Rats. Advances in Experimental Medicine and Biology, 2021, 1328, 275-285.	0.8	4
72	Renoprotective Roles of Curcumin. Advances in Experimental Medicine and Biology, 2021, 1328, 531-544.	0.8	4

#	Article	IF	CITATIONS
73	Antitumor and Protective Effects of Melatonin: The Potential Roles of MicroRNAs. Advances in Experimental Medicine and Biology, 2021, 1328, 463-471.	0.8	4
74	Boosting GLP-1 by Natural Products. Advances in Experimental Medicine and Biology, 2021, 1328, 513-522.	0.8	3
75	The Effects of Ginsenosides on the Nrf2 Signaling Pathway. Advances in Experimental Medicine and Biology, 2021, 1328, 307-322.	0.8	3
76	A response to "In response to â€`Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways'― Journal of Cellular Physiology, 2019, 234, 9908-9909.	2.0	2
77	Evaluation of Disease Severity and Health-Related Quality of Life in Patients with Rheumatoid Arthritis Undergoing Total Knee Arthroplasty. Current Rheumatology Reviews, 2021, 17, 88-94.	0.4	2
78	Evaluation of Vicarious PTSD among Children of Sardasht Chemical Warfare Survivors 20 Years after Iran-Iraq War. Journal of Applied Sciences, 2010, 10, 3111-3116.	0.1	2
79	Crocin Improves Oxidative Stress in Testicular Tissues of Streptozotocin-Induced Diabetic Rats. Advances in Experimental Medicine and Biology, 2021, 1308, 273-281.	0.8	1
80	Bilateral Facial Paralysis and Otitis Media as the First Presentations of Wegener's Granulomatosis: A Case Report. Hospital Practices and Research, 2017, 2, 125-127.	0.1	1
81	Evaluation of PPAR-α Agonist effect on Kidney Performance Through Increment of Nitric Oxide During Hyperglycemia-Induced Nephropathy in Rat. Razavi International Journal of Medicine, 2016, 4, .	0.1	1
82	Routine Offered Protocol is not reliable for Thrombophlebitis Prevention. Hospital Practices and Research, 2016, 1, 41-44.	0.1	1
83	Natural Insulin Sensitizers for the Management of Diabetes Mellitus: A Review of Possible Molecular Mechanisms. Advances in Experimental Medicine and Biology, 2021, 1328, 401-410.	0.8	1
84	Naturally Occurring SGLT2 Inhibitors: A Review. Advances in Experimental Medicine and Biology, 2021, 1328, 523-530.	0.8	1
85	Molecular mechanisms linking stress and insulin resistance EXCLI Journal, 2022, 21, 317-334.	0.5	1
86	The Effect of Interventional Factors Affecting on the Incidence of Thrombophlebitis in Patients with Peripheral Intravenous Catheter. PizhÅ«hish-i SalÄmat, 2016, 1, 1-2.	0.2	0
87	Individual and community values conflict with the approach of cognitive science and reduction strategies to increase mental health; an opinion study. PizhÅ«hish-i SalÄmat, 2016, 1, 123-131.	0.2	0