Cun-de Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Importance and vulnerability of the world's water towers. Nature, 2020, 577, 364-369.	27.8	885
2	Technologies and perspectives for achieving carbon neutrality. Innovation(China), 2021, 2, 100180.	9.1	306
3	State of the Antarctic and Southern Ocean climate system. Reviews of Geophysics, 2009, 47, .	23.0	190
4	Tropical teleconnection impacts on Antarctic climate changes. Nature Reviews Earth & Environment, 2021, 2, 680-698.	29.7	85
5	Cryospheric Science: research framework and disciplinary system. National Science Review, 2018, 5, 255-268.	9.5	82
6	Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene. Nature Communications, 2018, 9, 1476.	12.8	74
7	Near surface climate of the traverse route from Zhongshan Station to Dome A, East Antarctica. Antarctic Science, 2010, 22, 443-459.	0.9	60
8	Widespread Albedo Decreasing and Induced Melting of Himalayan Snow and Ice in the Early 21st Century. PLoS ONE, 2015, 10, e0126235.	2.5	53
9	Preliminary evidence indicating Dome A (Antarctica) satisfying preconditions for drilling the oldest ice core. Science Bulletin, 2008, 53, 102-106.	1.7	45
10	Observed changes of cryosphere in China over the second half of the 20th century: an overview. Annals of Glaciology, 2007, 46, 382-390.	1.4	40
11	Grey Tienshan Urumqi Glacier No.1 and light-absorbing impurities. Environmental Science and Pollution Research, 2016, 23, 9549-9558.	5.3	39
12	A 2680 year volcanic record from the DTâ€401 East Antarctic ice core. Journal of Geophysical Research, 2010, 115, .	3.3	31
13	Sentinelâ€Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghaiâ€Tibet Plateau. Earth and Space Science, 2021, 8, e2021EA001950.	2.6	31
14	Sea level pressure variability over the southern Indian Ocean inferred from a glaciochemical record in Princess Elizabeth Land, east Antarctica. Journal of Geophysical Research, 2004, 109, .	3.3	28
15	Characteristics of aerosol dust in fresh snow in the Asian dust and non-dust periods at Urumqi glacier no. 1 of eastern Tian Shan, China. Environmental Earth Sciences, 2010, 60, 1361-1368.	2.7	27
16	High methane emissions from thermokarst lakes on the Tibetan Plateau are largely attributed to ebullition fluxes. Science of the Total Environment, 2021, 801, 149692.	8.0	27
17	Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya. Journal of Glaciology, 2013, 59, 438-448.	2.2	26
18	Evaluation and Comparison of TRMM Multi-Satellite Precipitation Products With Reference to Rain Gauge Observations in Hunza River Basin, Karakoram Range, Northern Pakistan. Sustainability, 2017, 9, 1954.	3.2	25

#	Article	IF	CITATIONS
19	Cryosphere Services and Human Well-Being. Sustainability, 2019, 11, 4365.	3.2	25
20	Stable isotopes in surface snow along a traverse route from Zhongshan station to Dome A, East Antarctica. Climate Dynamics, 2013, 41, 2427-2438.	3.8	21
21	A key factor initiating surface ablation of Arctic sea ice: earlier and increasing liquid precipitation. Cryosphere, 2019, 13, 1233-1246.	3.9	21
22	Projection of future streamflow of the Hunza River Basin, Karakoram Range (Pakistan) using HBV hydrological model. Journal of Mountain Science, 2018, 15, 2218-2235.	2.0	20
23	Snow cover loss compounding the future economic vulnerability of western China. Science of the Total Environment, 2021, 755, 143025.	8.0	20
24	Mismatch between the population and meltwater changes creates opportunities and risks for global glacier-fed basins. Science Bulletin, 2022, 67, 9-12.	9.0	20
25	Progress on observation of cryospheric components and climate-related studies in China. Advances in Atmospheric Sciences, 2008, 25, 164-180.	4.3	19
26	Distribution of δ 180 in surface snow along a transect from Zhongshan Station to Dome A, East Antarctica. Science Bulletin, 2010, 55, 2709-2714.	1.7	19
27	Identification of multiple natural and anthropogenic sources of dust in snow from Zhongshan Station to Dome A, East Antarctica. Journal of Glaciology, 2018, 64, 855-865.	2.2	18
28	Evaluation of atmospheric boundary layer–surface process relationships in a regional climate model along an East Antarctic traverse. Journal of Geophysical Research, 2012, 117, .	3.3	17
29	Spatial and temporal variations of total mercury in Antarctic snow along the transect from Zhongshan Station to Dome A. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 25152.	1.6	17
30	Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range. Journal of Environmental Sciences, 2014, 26, 2266-2276.	6.1	17
31	The Spatial Pattern of Ski Areas and Its Driving Factors in China: A Strategy for Healthy Development of the Ski Industry. Sustainability, 2019, 11, 3138.	3.2	17
32	Preliminary results of the close-off depth and the stable isotopic records along a 109.91 m ice core from Dome A, Antarctica. Science in China Series D: Earth Sciences, 2009, 52, 1502-1509.	0.9	14
33	Geochemical characteristics of insoluble dust as a tracer in an ice core from Miaoergou Glacier, east Tien Shan. Global and Planetary Change, 2015, 127, 12-21.	3.5	14
34	Cascading risks to the deterioration in cryospheric functions and services. Chinese Science Bulletin, 2019, 64, 1975-1984.	0.7	14
35	In-situ measurement on air–water flux of CH4, CO2 and their carbon stable isotope in lakes of northeast Tibetan Plateau. Advances in Climate Change Research, 2022, 13, 279-289.	5.1	14
36	Spatial and temporal variability of marine-origin matter along a transect from Zhongshan Station to Dome A, Eastern Antarctica. Journal of Environmental Sciences, 2016, 46, 190-202.	6.1	12

#	Article	IF	CITATIONS
37	Natural vs. anthropogenic sources supply aeolian dust to the Miaoergou Glacier: Evidence from Sr–Pb isotopes in the eastern Tienshan ice core. Quaternary International, 2017, 430, 60-70.	1.5	12
38	Variability of Antarctic sea ice extent over the past 200Âyears. Science Bulletin, 2021, 66, 2394-2404.	9.0	12
39	Re-assessment of recent (2008–2013) surface mass balance over Dome Argus, Antarctica. Polar Research, 2016, 35, 26133.	1.6	11
40	The perchlorate record during 1956–2004 from Tienshan ice core, East Asia. Science of the Total Environment, 2019, 656, 1121-1132.	8.0	11
41	Towards More Snow Days in Summer since 2001 at the Great Wall Station, Antarctic Peninsula: The Role of the Amundsen Sea Low. Advances in Atmospheric Sciences, 2020, 37, 494-504.	4.3	11
42	Mass balance of the Lambert Glacier basin, East Antarctica. Science in China Series D: Earth Sciences, 2002, 45, 842-850.	0.9	10
43	New focuses of polar ice-core study: NEEM and Dome A. Science Bulletin, 2009, 54, 1009-1011.	9.0	10
44	The evolution and volcanic forcing of the southern annular mode during the past 300 years. International Journal of Climatology, 2018, 38, 1706-1717.	3.5	10
45	Larger Sensitivity of Arctic Precipitation Phase to Aerosol than Greenhouse Gas Forcing. Geophysical Research Letters, 2020, 47, e2020GL090452.	4.0	10
46	CH4 and CO2 observations from a melting high mountain glacier, Laohugou Glacier No. 12. Advances in Climate Change Research, 2022, 13, 146-155.	5.1	10
47	A one-dimensional heat transfer model of the Antarctic Ice Sheet and modeling of snow temperatures at Dome A, the summit of Antarctic Plateau. Science China Earth Sciences, 2010, 53, 763-772.	5.2	9
48	Temporal variations in marine chemical concentrations in coastal areas of eastern Antarctica and associated climatic causes. Quaternary International, 2014, 352, 16-25.	1.5	9
49	Changes in the Proportion of Precipitation Occurring as Rain in Northern Canada during Spring–Summer from 1979–2015. Advances in Atmospheric Sciences, 2018, 35, 1129-1136.	4.3	9
50	Dust provenance in Pan-third pole modern glacierized regions: What is the regional source?. Environmental Pollution, 2019, 250, 762-772.	7.5	9
51	Climatic and environmental signals recorded in the EGRIP snowpit, Greenland. Environmental Earth Sciences, 2019, 78, 1.	2.7	9
52	An ice-core record of Antarctic sea-ice extent in the southern Indian Ocean for the past 300 years. Annals of Glaciology, 2015, 56, 451-455.	1.4	8
53	Relationship between the 2014–2015 Holuhraun eruption and the iron record in the East GRIP snow pit. Arctic, Antarctic, and Alpine Research, 2019, 51, 290-298.	1.1	8
54	Dating a 109.9 m ice core from Dome A (East Antarctica) with volcanic records and a firn densification model. Science China Earth Sciences, 2012, 55, 1280-1288.	5.2	7

#	Article	IF	CITATIONS
55	Assessment of air temperatures from different meteorological reanalyses for the East Antarctic region between Zhonshan and Dome A. Science China Earth Sciences, 2014, 57, 1538-1550.	5.2	7
56	Reconstruction of autumn sea ice extent changes since AD1289 in the Barents-Kara Sea, Arctic. Science China Earth Sciences, 2018, 61, 1279-1291.	5.2	7
57	Comparison of Sr–Nd–Pb isotopes in insoluble dust between northwestern China and high-latitude regions in the Northern Hemisphere. Atmospheric Environment, 2019, 214, 116837.	4.1	7
58	Assessment of Surface Pressure between Zhongshan and Dome a in East Antarctica from Different Meteorological Reanalyses. Arctic, Antarctic, and Alpine Research, 2014, 46, 669-681.	1.1	6
59	Can Temperature Extremes in East Antarctica be Replicated from ERA Interim Reanalysis?. Arctic, Antarctic, and Alpine Research, 2016, 48, 603-621.	1.1	6
60	A 300-Year High-Resolution Greenland Ice Record of Large-Scale Atmospheric Pollution by Arsenic in the Northern Hemisphere. Environmental Science & Technology, 2019, 53, 12999-13008.	10.0	6
61	Fe variation characteristics and sources in snow samples along a traverse from Zhongshan Station to Dome A, East Antarctica. Science of the Total Environment, 2019, 675, 380-389.	8.0	6
62	The iron records and its sources during 1990–2017 from the Lambert Glacial Basin shallow ice core, East Antarctica. Chemosphere, 2020, 251, 126399.	8.2	6
63	Iron in the NEEM ice core relative to Asian loess records over the last glacial–interglacial cycle. National Science Review, 2021, 8, nwaa144.	9.5	6
64	Modulation of the relationship between summer temperatures in the Qinghai–Tibetan Plateau and Arctic over the past millennium by external forcings. Quaternary Research, 2021, 103, 130-138.	1.7	6
65	Arctic has been going through a transition from solid precipitation to liquid precipitation in spring. Chinese Science Bulletin, 2018, 63, 1154-1162.	0.7	6
66	Iron record associated with sandstorms in a central Asian shallow ice core spanning 1956–2004. Atmospheric Environment, 2019, 203, 121-130.	4.1	5
67	Estimation of the Atmospheric Ice Content Mass, Spatial Distribution, and Longâ€Term Changes Based on the ERA5 Reanalysis. Geophysical Research Letters, 2020, 47, e2020GL088186.	4.0	5
68	Linkage of liquid conductivity of glacier ice with its alkalinity over the north Qinghai-Xizang (Tibet) Plateau. Science in China Series D: Earth Sciences, 2002, 45, 300-310.	0.9	4
69	Factors controlling the nitrate in the DT-401 ice core in eastern Antarctica. Science China Earth Sciences, 2013, 56, 1531-1539.	5.2	4
70	Perspectives of XRF and XANES Applications in Cryospheric Sciences Using Chinese SR Facilities. Condensed Matter, 2018, 3, 29.	1.8	4
71	Importance and vulnerability of water towers across Northwest China. Advances in Climate Change Research, 2022, 13, 63-72.	5.1	4
72	Upwelling of Atlantic Water in Barrow Canyon, Chukchi Sea. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	4

#	Article	IF	CITATIONS
73	Sedimentary organic carbon storage of thermokarst lakes and ponds across Tibetan permafrost region. Science of the Total Environment, 2022, 831, 154761.	8.0	4
74	A 2680-year record of sea ice extent in the Ross Sea and the associated atmospheric circulation derived from the DT401 East Antarctic ice core. Science China Earth Sciences, 2015, 58, 2090-2102.	5.2	3
75	Sea Salt Sodium Record in a Shallow Ice Core from East Antarctica as a Potential Proxy of the Antarctic Sea Ice Extent in Southern Indian Ocean. Journal of Ocean University of China, 2019, 18, 1351-1359.	1.2	3
76	Evaluating Cryospheric Water Withdrawal and Virtual Water Flows in Tarim River Basin of China: An Input–Output Analysis. Sustainability, 2021, 13, 7589.	3.2	2
77	Increasing Difference in Interannual Summertime Surface Air Temperature Between Interior East Antarctica and the Antarctic Peninsula Under Future Climate Scenarios. Geophysical Research Letters, 2021, 48, e2020GL092031.	4.0	2
78	Bidecadal Temperature Anomalies Over the Tibetan Plateau and Arctic in Response to the 1450s Volcanic Eruptions. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	2
79	Spatial distribution of marine chemicals along a transect from Zhongshan Station to the Grove Mountain area, Eastern Antarctica. Science China Earth Sciences, 2014, 57, 2366-2373.	5.2	1
80	Quantifying the developed and developing worlds' carbon reduction contributions to Northern Hemisphere cryosphere change. International Journal of Climatology, 2019, 39, 3231-3240.	3.5	1
81	Spatial Variability of Claciochemistry along a Transect from Zhongshan Station to LGB69, Antarctica. Atmosphere, 2021, 12, 393.	2.3	1
82	A Preliminary Investigation of Arctic Sea Ice Negative Freeboard from in-situ Observations and Radar Altimetry. Journal of Ocean University of China, 2021, 20, 307-314.	1.2	1
83	Cascading costs of snow cover reduction trend in northern hemisphere. Science of the Total Environment, 2021, 806, 150970.	8.0	1
84	Condensed Matter Researches in Cryospheric Science. Condensed Matter, 2019, 4, 68.	1.8	0
85	A shallow ice core from East Greenland showing a reduction in black carbon during 1990–2016. Advances in Climate Change Research, 2020, 11, 360-369.	5.1	0