Leonardo G Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212159/publications.pdf

Version: 2024-02-01

233 papers 39,862 citations

98 h-index 193 g-index

238 all docs

238 docs citations

times ranked

238

21825 citing authors

#	Article	IF	CITATIONS
1	Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 2008, 1, 206-223.	1.6	2,538
2	Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 2006, 117, 845-850.	1.5	1,435
3	Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning. Neuron, 2010, 66, 198-204.	8.1	1,177
4	Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1590-1595.	7.1	1,168
5	Neuroplasticity Subserving Motor Skill Learning. Neuron, 2011, 72, 443-454.	8.1	1,024
6	Rapid Plasticity of Human Cortical Movement Representation Induced by Practice. Journal of Neurophysiology, 1998, 79, 1117-1123.	1.8	976
7	Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 2005, 128, 490-499.	7.6	963
8	Functional relevance of cross-modal plasticity in blind humans. Nature, 1997, 389, 180-183.	27.8	920
9	Harnessing neuroplasticity for clinical applications. Brain, 2011, 134, 1591-1609.	7.6	907
10	Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?. Lancet Neurology, The, 2006, 5, 708-712.	10.2	762
11	Brain–machine interface in chronic stroke rehabilitation: A controlled study. Annals of Neurology, 2013, 74, 100-108.	5. 3	754
12	Effectiveness of Virtual Reality Using Wii Gaming Technology in Stroke Rehabilitation. Stroke, 2010, 41, 1477-1484.	2.0	627
13	Brain-computer interfaces: communication and restoration of movement in paralysis. Journal of Physiology, 2007, 579, 621-636.	2.9	597
13	Brain-computer interfaces: communication and restoration of movement in paralysis. Journal of Physiology, 2007, 579, 621-636. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. Journal of Physiology, 2002, 543, 699-708.	2.9	597 557
	Physiology, 2007, 579, 621-636. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired		
14	Physiology, 2007, 579, 621-636. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. Journal of Physiology, 2002, 543, 699-708.	2.9	557
14 15	Physiology, 2007, 579, 621-636. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. Journal of Physiology, 2002, 543, 699-708. Motor learning elicited by voluntary drive. Brain, 2003, 126, 866-872. Think to Move: a Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke. Stroke,	2.9 7.6	557 555

#	Article	IF	CITATIONS
19	Mechanisms Underlying Recovery of Motor Function After Stroke. Archives of Neurology, 2004, 61, 1844-8.	4.5	527
20	Neuroplasticity in the context of motor rehabilitation after stroke. Nature Reviews Neurology, 2011, 7, 76-85.	10.1	500
21	Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. Journal of Physiology, 2008, 586, 325-351.	2.9	480
22	Noninvasive brain stimulation: from physiology to network dynamics and back. Nature Neuroscience, 2013, 16, 838-844.	14.8	466
23	A Positron Emission Tomographic Study of Auditory Localization in the Congenitally Blind. Journal of Neuroscience, 2000, 20, 2664-2672.	3.6	442
24	Intracortical Inhibition and Facilitation in Different Representations of the Human Motor Cortex. Journal of Neurophysiology, 1998, 80, 2870-2881.	1.8	419
25	Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain, 2006, 129, 791-808.	7.6	403
26	Reorganization of Motor and Somatosensory Cortex in Upper Extremity Amputees with Phantom Limb Pain. Journal of Neuroscience, 2001, 21, 3609-3618.	3.6	399
27	Reorganization of the human ipsilesional premotor cortex after stroke. Brain, 2004, 127, 747-758.	7.6	381
28	Mechanisms of Deafferentation-Induced Plasticity in Human Motor Cortex. Journal of Neuroscience, 1998, 18, 7000-7007.	3.6	379
29	Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalography and Clinical Neurophysiology, 1990, 75, 350-357.	0.3	368
30	Modulation of motor cortical outputs to the reading hand of braille readers. Annals of Neurology, 1993, 34, 33-37.	5.3	360
31	Time course of corticospinal excitability in reaction time and selfâ€paced movements. Annals of Neurology, 1998, 44, 317-325.	5.3	358
32	Modulation of human corticomotor excitability by somatosensory input. Journal of Physiology, 2002, 540, 623-633.	2.9	357
33	Formation of a Motor Memory by Action Observation. Journal of Neuroscience, 2005, 25, 9339-9346.	3.6	348
34	State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimulation, 2008, 1, 151-163.	1.6	342
35	Modulation of Plasticity in Human Motor Cortex after Forearm Ischemic Nerve Block. Journal of Neuroscience, 1998, 18, 1115-1123.	3.6	336
36	Period of susceptibility for cross-modal plasticity in the blind. Annals of Neurology, 1999, 45, 451-460.	5.3	309

#	Article	IF	Citations
37	Consensus paper: Combining transcranial stimulation with neuroimaging. Brain Stimulation, 2009, 2, 58-80.	1.6	299
38	Involvement of the ipsilateral motor cortex in finger movements of different complexities. Annals of Neurology, 1997, 41, 247-254.	5.3	297
39	Rapid modulation of human cortical motor outputs following ischaemic nerve block. Brain, 1993, 116, 511-525.	7.6	288
40	Transcallosal inhibition in chronic subcortical stroke. NeuroImage, 2005, 28, 940-946.	4.2	282
41	Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurology, The, 2016, 15, 1019-1027.	10.2	279
42	Mechanisms of Cortical Reorganization in Lower-Limb Amputees. Journal of Neuroscience, 1998, 18, 3443-3450.	3.6	275
43	Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clinical Neurophysiology, 2017, 128, 589-603.	1.5	275
44	Constraint-Induced Therapy in Stroke: Magnetic-Stimulation Motor Maps and Cerebral Activation. Neurorehabilitation and Neural Repair, 2003, 17, 48-57.	2.9	267
45	Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2017, 12, 480-493.	5.9	266
46	Reward Improves Long-Term Retention of a Motor Memory through Induction of Offline Memory Gains. Current Biology, 2011, 21, 557-562.	3.9	265
47	Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nature Neuroscience, 2004, 7, 1266-1270.	14.8	256
48	Brain–machine interfaces in neurorehabilitation of stroke. Neurobiology of Disease, 2015, 83, 172-179.	4.4	256
49	Mechanisms Underlying Functional Changes in the Primary Motor Cortex Ipsilateral to an Active Hand. Journal of Neuroscience, 2008, 28, 5631-5640.	3.6	238
50	Improvement of Motor Function with Noninvasive Cortical Stimulation in a Patient with Chronic Stroke. Neurorehabilitation and Neural Repair, 2005, 19, 14-19.	2.9	237
51	Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation?. Brain Stimulation, 2008, 1 , 363-369.	1.6	225
52	Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. Journal of Physiology, 1998, 510, 249-259.	2.9	219
53	Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimulation, 2008, 1, 326-336.	1.6	218
54	Intermanual Differences in Movement-related Interhemispheric Inhibition. Journal of Cognitive Neuroscience, 2007, 19, 204-213.	2.3	204

#	Article	IF	CITATIONS
55	Effects of Action Observation on Physical Training After Stroke. Stroke, 2008, 39, 1814-1820.	2.0	204
56	Postexercise depression of motor evoked potentials: a measure of central nervous system fatigue. Experimental Brain Research, 1993, 93, 181-4.	1.5	201
57	Enhancing Encoding of a Motor Memory in the Primary Motor Cortex By Cortical Stimulation. Journal of Neurophysiology, 2004, 91, 2110-2116.	1.8	194
58	Somatosensory Stimulation Enhances the Effects of Training Functional Hand Tasks in Patients With Chronic Stroke. Archives of Physical Medicine and Rehabilitation, 2007, 88, 1369-1376.	0.9	193
59	Role of the Ipsilateral Motor Cortex in Voluntary Movement. Canadian Journal of Neurological Sciences, 1997, 24, 284-291.	0.5	180
60	Rewiring the Brain. Neurorehabilitation and Neural Repair, 2012, 26, 282-292.	2.9	177
61	Cortical excitability changes induced by deafferentation of the contralateral hemisphere. Brain, 2002, 125, 1402-1413.	7.6	176
62	Neuroenhancement of the aging brain: Restoring skill acquisition in old subjects. Annals of Neurology, 2013, 73, 10-15.	5.3	176
63	Brain–Computer Interface–Based Communication in the Completely Locked-In State. PLoS Biology, 2017, 15, e1002593.	5.6	176
64	Modulation of Training by Single-Session Transcranial Direct Current Stimulation to the Intact Motor Cortex Enhances Motor Skill Acquisition of the Paretic Hand. Stroke, 2012, 43, 2185-2191.	2.0	175
65	Dopaminergic influences on formation of a motor memory. Annals of Neurology, 2005, 58, 121-130.	5.3	171
66	Effects of Combined Peripheral Nerve Stimulation and Brain Polarization on Performance of a Motor Sequence Task After Chronic Stroke. Stroke, 2009, 40, 1764-1771.	2.0	171
67	Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Frontiers in Human Neuroscience, 2014, 8, 378.	2.0	162
68	Studies of Neuroplasticity With Transcranial Magnetic Stimulation. Journal of Clinical Neurophysiology, 1998, 15, 305-324.	1.7	161
69	Effects of different viewing perspectives on somatosensory activations during observation of touch. Human Brain Mapping, 2009, 30, 2722-2730.	3.6	159
70	Encoding a motor memory in the older adult by action observation. NeuroImage, 2006, 29, 677-684.	4.2	158
71	Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiology of Aging, 2010, 31, 2160-2168.	3.1	154
72	Influence of Electric Somatosensory Stimulation on Paretic-Hand Function in Chronic Stroke. Archives of Physical Medicine and Rehabilitation, 2006, 87, 351-357.	0.9	151

#	Article	IF	CITATIONS
73	Role of Voluntary Drive in Encoding an Elementary Motor Memory. Journal of Neurophysiology, 2005, 93, 1099-1103.	1.8	148
74	Common mechanisms of human perceptual and motor learning. Nature Reviews Neuroscience, 2012, 13, 658-664.	10.2	148
75	Central fatigue as revealed by postexercise decrement of motor evoked potentials. Muscle and Nerve, 1994, 17, 713-719.	2.2	145
76	Drivers of brain plasticity. Current Opinion in Neurology, 2005, 18, 667-674.	3.6	144
77	Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimulation, 2018, 11, 465-480.	1.6	144
78	Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca's homologue area. Restorative Neurology and Neuroscience, 2011, 29, 141-152.	0.7	143
79	Noninvasive brain stimulation in stroke rehabilitation. NeuroRx, 2006, 3, 474-481.	6.0	142
80	Enhanced tactile spatial acuity and cortical processing during acute hand deafferentation. Nature Neuroscience, 2002, 5, 936-938.	14.8	139
81	Functional connectivity between somatosensory and visual cortex in early blind humans. European Journal of Neuroscience, 2004, 20, 1923-1927.	2.6	135
82	Neurophysiological Mechanisms Involved in Transfer of Procedural Knowledge. Journal of Neuroscience, 2007, 27, 1045-1053.	3.6	135
83	Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes. Journal of Neurology, 2007, 254, 333-339.	3.6	132
84	Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimulation, 2008, 1, 370-382.	1.6	131
85	Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain, 2012, 135, 596-614.	7.6	131
86	Effects of Somatosensory Stimulation on Motor Function After Subacute Stroke. Neurorehabilitation and Neural Repair, 2010, 24, 263-272.	2.9	130
87	Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. Journal of Neurophysiology, 2011, 106, 652-661.	1.8	127
88	Biomarkers of Stroke Recovery: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2017, 31, 864-876.	2.9	124
89	Time- but Not Sleep-Dependent Consolidation of tDCS-Enhanced Visuomotor Skills. Cerebral Cortex, 2015, 25, 109-117.	2.9	119
90	Mechanisms Influencing Acquisition and Recall of Motor Memories. Journal of Neurophysiology, 2002, 88, 2114-2123.	1.8	116

#	Article	IF	Citations
91	Neuroimaging in Stroke Recovery: A Position Paper from the First International Workshop on Neuroimaging and Stroke Recovery. Cerebrovascular Diseases, 2004, 18, 260-267.	1.7	115
92	Effects of Somatosensory Stimulation on Use-Dependent Plasticity in Chronic Stroke. Stroke, 2006, 37, 246-247.	2.0	115
93	Multimodal output mapping of human central motor representation on different spatial scales. Journal of Physiology, 1998, 512, 163-179.	2.9	114
94	Improvement of spatial tactile acuity by transcranial direct current stimulation. Clinical Neurophysiology, 2008, 119, 805-811.	1.5	113
95	Enduring representational plasticity after somatosensory stimulation. Neurolmage, 2005, 27, 872-884.	4.2	112
96	A theoretical calculation of the electric field induced by magnetic stimulation of a peripheral nerve. Muscle and Nerve, 1990, 13, 734-741.	2.2	109
97	Contribution of Transcranial Magnetic Stimulation to the Understanding of Functional Recovery Mechanisms After Stroke. Neurorehabilitation and Neural Repair, 2010, 24, 125-135.	2.9	108
98	Recovery of function in humans: Cortical stimulation and pharmacological treatments after stroke. Neurobiology of Disease, 2010, 37, 243-251.	4.4	106
99	Modification of Existing Human Motor Memories Is Enabled by Primary Cortical Processing during Memory Reactivation. Current Biology, 2010, 20, 1545-1549.	3.9	105
100	Visual and motor cortex excitability: a transcranial magnetic stimulation study. Clinical Neurophysiology, 2002, 113, 1501-1504.	1.5	101
101	Training-dependent plasticity in patients with multiple sclerosis. Brain, 2004, 127, 2506-2517.	7.6	101
102	SIMPLE REACTION TIME TO FOCAL TRANSCRANIAL MAGNETIC STIMULATION. Brain, 1992, 115, 109-122.	7.6	97
103	Volition and Imagery in Neurorehabilitation. Cognitive and Behavioral Neurology, 2006, 19, 135-140.	0.9	97
104	Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Frontiers in Aging Neuroscience, 2014, 6, 289.	3.4	97
105	A Rapid Form of Offline Consolidation in Skill Learning. Current Biology, 2019, 29, 1346-1351.e4.	3.9	91
106	Reproducibility of intracortical inhibition and facilitation using the paired-pulse paradigm. Muscle and Nerve, 2000, 23, 1594-1597.	2.2	90
107	Integrated Motor Cortical Control of Task-Related Muscles During Pointing in Humans. Journal of Neurophysiology, 2002, 87, 3006-3017.	1.8	90
108	Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback. Neurorehabilitation and Neural Repair, 2016, 30, 671-675.	2.9	89

#	Article	IF	Citations
109	Transcranial magnetic stimulation in mild to severe hemiparesis early after stroke: a proof of principle and novel approach to improve motor function. Journal of Neurology, 2012, 259, 1399-1405.	3.6	88
110	Modulation of rodent cortical motor excitability by somatosensory input. Experimental Brain Research, 2002, 142, 562-569.	1.5	87
111	Transcranial magnetic stimulation in the rat. Experimental Brain Research, 2001, 140, 112-121.	1.5	82
112	Interhemispheric Inhibition in Distal and Proximal Arm Representations in the Primary Motor Cortex. Journal of Neurophysiology, 2007, 97, 2511-2515.	1.8	81
113	Predicting motor improvement after stroke with clinical assessment and diffusion tensor imaging. Neurology, 2016, 86, 1924-1925.	1.1	80
114	Neural plasticity and its contribution to functional recovery. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 110, 3-12.	1.8	79
115	A method for determining optimal interelectrode spacing for cerebral topographic mapping. Electroencephalography and Clinical Neurophysiology, 1989, 72, 355-361.	0.3	78
116	The olympic brain. Does corticospinal plasticity play a role in acquisition of skills required for highâ€performance sports?. Journal of Physiology, 2008, 586, 65-70.	2.9	78
117	Enhancement of human cortico-motoneuronal excitability by the selective norepinephrine reuptake inhibitor reboxetine. Neuroscience Letters, 2002, 330, 231-234.	2.1	72
118	Steady-state movement-related cortical potentials: a new approach to assessing cortical activity associated with fast repetitive finger movements. Electroencephalography and Clinical Neurophysiology, 1997, 102, 106-113.	0.3	71
119	Recovery of motor function after stroke. Developmental Psychobiology, 2012, 54, 254-262.	1.6	71
120	Mechanisms of Short-Term Training-Induced Reaching Improvement in Severely Hemiparetic Stroke Patients. Neurorehabilitation and Neural Repair, 2011, 25, 398-411.	2.9	69
121	Noninvasive brain stimulation in neurorehabilitation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 116, 499-524.	1.8	69
122	Mechanisms underlying human motor system plasticity. Muscle and Nerve, 2001, 24, 602-613.	2.2	67
123	Causal Role of Prefrontal Cortex in Strengthening of Episodic Memories through Reconsolidation. Current Biology, 2013, 23, 2181-2184.	3.9	66
124	Mechanisms controlling motor output to a transfer hand after learning a sequential pinch force skill with the opposite hand. Clinical Neurophysiology, 2009, 120, 1859-1865.	1.5	64
125	A theoretical comparison of electric and magnetic stimulation of the brain. Annals of Biomedical Engineering, 1991, 19, 317-328.	2.5	63
126	Double dissociation of working memory load effects induced by bilateral parietal modulation. Neuropsychologia, 2012, 50, 396-402.	1.6	62

#	Article	IF	Citations
127	Interference with Existing Memories Alters Offline Intrinsic Functional Brain Connectivity. Neuron, 2014, 81, 69-76.	8.1	61
128	tACS Phase Locking of Frontal Midline Theta Oscillations Disrupts Working Memory Performance. Frontiers in Cellular Neuroscience, 2016, 10, 120.	3.7	61
129	Older adults get episodic memory boosting from noninvasive stimulation of prefrontal cortex during learning. Neurobiology of Aging, 2016, 39, 210-216.	3.1	61
130	Brain-Machine Interface in Chronic Stroke: Randomized Trial Long-Term Follow-up. Neurorehabilitation and Neural Repair, 2019, 33, 188-198.	2.9	61
131	Sensorimotor Oscillatory Phase–Power Interaction Gates Resting Human Corticospinal Output. Cerebral Cortex, 2019, 29, 3766-3777.	2.9	59
132	Influence of Somatosensory Input on Interhemispheric Interactions in Patients With Chronic Stroke. Neurorehabilitation and Neural Repair, 2008, 22, 477-485.	2.9	57
133	Interhemispheric Interactions between the Human Primary Somatosensory Cortices. PLoS ONE, 2011, 6, e16150.	2.5	56
134	Cortico-subcortical neuronal circuitry associated withÂreconsolidation of human procedural memories. Cortex, 2014, 58, 281-288.	2.4	55
135	Kinematic specificity of cortical reorganization associated with motor training. NeuroImage, 2004, 21, 1182-1187.	4.2	51
136	Scaling of motor cortical excitability during unimanual force generation. Cortex, 2009, 45, 1065-1071.	2.4	51
137	Differential Brain Mechanisms of Selection and Maintenance of Information during Working Memory. Journal of Neuroscience, 2019, 39, 3728-3740.	3.6	51
138	Consolidation of human skill linked to waking hippocampo-neocortical replay. Cell Reports, 2021, 35, 109193.	6.4	51
139	Modulation of motor learning and memory formation by non-invasive cortical stimulation of the primary motor cortex. Neuropsychological Rehabilitation, 2011, 21, 650-675.	1.6	50
140	Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory. Journal of Physiology, 2011, 589, 21-28.	2.9	50
141	Modulating reconsolidation: a link to causal systems-level dynamics of human memories. Trends in Cognitive Sciences, 2015, 19, 475-482.	7.8	50
142	MR compatible force sensing system for real-time monitoring of wrist moments during fMRI testing. Journal of Neuroscience Methods, 2006, 155, 300-307.	2.5	49
143	Enhancing Hebbian Learning to Control Brain Oscillatory Activity. Cerebral Cortex, 2015, 25, 2409-2415.	2.9	49
144	Longitudinal Structural and Functional Differences Between Proportional and Poor Motor Recovery After Stroke. Neurorehabilitation and Neural Repair, 2017, 31, 1029-1041.	2.9	49

#	Article	IF	Citations
145	Mechanisms of offline motor learning at a microscale of seconds in large-scale crowdsourced data. Npj Science of Learning, 2020, 5, 7.	2.8	49
146	Stimulation-Induced Within-Representation and Across-Representation Plasticity in Human Motor Cortex. Journal of Neuroscience, 2002, 22, 5563-5571.	3.6	47
147	Plastic changes in the human H-reflex pathway at rest following skillful cycling training. Clinical Neurophysiology, 2006, 117, 1682-1691.	1.5	46
148	Motor callosal disconnection in early relapsingâ€remitting multiple sclerosis. Human Brain Mapping, 2011, 32, 846-855.	3.6	44
149	Primary Motor Cortex in Stroke. Stroke, 2011, 42, 1004-1009.	2.0	44
150	Methodology for non-invasive mapping of human motor cortex with electrical stimulation. Electroencephalography and Clinical Neurophysiology, 1988, 69, 403-411.	0.3	43
151	The Corticospinal System and Transcranial Magnetic Stimulation in Stroke. Topics in Stroke Rehabilitation, 2009, 16, 254-269.	1.9	43
152	Modifying somatosensory processing with non-invasive brain stimulation. Restorative Neurology and Neuroscience, 2011, 29, 427-437.	0.7	43
153	Time-Specific Contribution of the Supplementary Motor Area to Intermanual Transfer of Procedural Knowledge. Journal of Neuroscience, 2008, 28, 9664-9669.	3.6	42
154	Learned EEG-based brain self-regulation of motor-related oscillations during application of transcranial electric brain stimulation: feasibility and limitations. Frontiers in Behavioral Neuroscience, 2014, 8, 93.	2.0	42
155	Dual modulating effects of amphetamine on neuronal excitability and stimulation-induced plasticity in human motor cortex. Clinical Neurophysiology, 2002, 113, 1308-1315.	1.5	41
156	Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis. Neurorehabilitation and Neural Repair, 2018, 32, 863-871.	2.9	41
157	Transcranial Direct Current Stimulation Enhances Motor Skill Learning but Not Generalization in Chronic Stroke. Neurorehabilitation and Neural Repair, 2018, 32, 295-308.	2.9	40
158	Lowâ€Frequency Brain Oscillations Track Motor Recovery in Human Stroke. Annals of Neurology, 2019, 86, 853-865.	5.3	39
159	Decoding upper limb residual muscle activity in severe chronic stroke. Annals of Clinical and Translational Neurology, 2015, 2, 1-11.	3.7	38
160	Induction of LTD-like corticospinal plasticity by low-frequency rTMS depends on pre-stimulus phase of sensorimotor $\hat{l}\frac{1}{4}$ -rhythm. Brain Stimulation, 2020, 13, 1580-1587.	1.6	38
161	Modulation of motor function and cortical plasticity in health and disease. Restorative Neurology and Neuroscience, 2004, 22, 261-8.	0.7	38
162	Practice and sleep form different aspects of skill. Nature Communications, 2014, 5, 3407.	12.8	36

#	Article	IF	Citations
163	PreSMA stimulation changes taskâ€free functional connectivity in the frontoâ€basalâ€ganglia that correlates with response inhibition efficiency. Human Brain Mapping, 2016, 37, 3236-3249.	3.6	36
164	A case for the involvement of phonological loop in sentence comprehension. Neuropsychologia, 2010, 48, 4003-4011.	1.6	35
165	Modulation of Effects of Intermittent Theta Burst Stimulation Applied Over Primary Motor Cortex (M1) by Conditioning Stimulation of the Opposite M1. Journal of Neurophysiology, 2009, 102, 766-773.	1.8	34
166	Modulation of H-reflex excitability by tetanic stimulation. Clinical Neurophysiology, 2004, 115, 858-861.	1.5	33
167	Translational Studies in Neurorehabilitation: From Bench to Bedside. Cognitive and Behavioral Neurology, 2006, 19, 1-10.	0.9	33
168	Stochastic reinforcement benefits skill acquisition. Learning and Memory, 2014, 21, 140-142.	1.3	31
169	Limitations of Electromyography and Magnetic Stimulation for Assessing Laryngeal Muscle Control. Annals of Otology, Rhinology and Laryngology, 1994, 103, 16-27.	1.1	30
170	Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields. NeuroImage, 2016, 140, 33-40.	4.2	30
171	Transcranial direct current stimulation facilitates response inhibition through dynamic modulation of the fronto-basal ganglia network. Brain Stimulation, 2020, 13, 96-104.	1.6	30
172	Neural Substrates of Motor Recovery in Severely Impaired Stroke Patients With Hand Paralysis. Neurorehabilitation and Neural Repair, 2016, 30, 328-338.	2.9	29
173	Cortical mechanisms of recovery of function after stroke. NeuroRehabilitation, 1998, 10, 131-142.	1.3	29
174	A Preliminary Comparison of Motor Learning Across Different Non-invasive Brain Stimulation Paradigms Shows No Consistent Modulations. Frontiers in Neuroscience, 2018, 12, 253.	2.8	27
175	Transcutaneous spinal direct current stimulation improves locomotor learning in healthy humans. Brain Stimulation, 2019, 12, 628-634.	1.6	27
176	Plasticity of cortical hand muscle representation in patients with hemifacial spasm. Neuroscience Letters, 1999, 272, 33-36.	2.1	24
177	Reversed timing-dependent associative plasticity in the human brain through interhemispheric interactions. Journal of Neurophysiology, 2013, 109, 2260-2271.	1.8	24
178	Combined Brain and Peripheral Nerve Stimulation in Chronic Stroke Patients With Moderate to Severe Motor Impairment. Neuromodulation, 2018, 21, 176-183.	0.8	24
179	Time Course of Determination of Movement Direction in the Reaction Time Task in Humans. Journal of Neurophysiology, 2001, 86, 1195-1201.	1.8	23
180	Nonparetic Arm Force Does Not Overinhibit the Paretic Arm in Chronic Poststroke Hemiparesis. Archives of Physical Medicine and Rehabilitation, 2014, 95, 849-856.	0.9	23

#	Article	IF	Citations
181	Practice Structure Improves Unconscious Transitional Memories by Increasing Synchrony in a Premotor Network. Journal of Cognitive Neuroscience, 2015, 27, 1503-1512.	2.3	21
182	Interhemispheric Asymmetry of Corticomotor Excitability After Chronic Cerebellar Infarcts. Cerebellum, 2010, 9, 398-404.	2.5	20
183	Brain Structural Substrates of Reward Dependence during Behavioral Performance. Journal of Neuroscience, 2014, 34, 16433-16441.	3.6	20
184	Re-stepping into the same river: competition problem rather than a reconsolidation failure in an established motor skill. Scientific Reports, 2017, 7, 9406.	3.3	20
185	Lasting deficit in inhibitory control with mild traumatic brain injury. Scientific Reports, 2017, 7, 14902.	3.3	20
186	Motor cortex excitability in patients with cerebellar degeneration. Clinical Neurophysiology, 2000, 111, 1157-1164.	1.5	19
187	Baseline frontostriatal-limbic connectivity predicts reward-based memory formation. Human Brain Mapping, 2014, 35, 5921-5931.	3.6	19
188	Altered Human Memory Modification in the Presence of Normal Consolidation. Cerebral Cortex, 2016, 26, 3828-3837.	2.9	19
189	Cortical map plasticity in humans. Trends in Neurosciences, 1992, 15, 13-14.	8.6	16
190	Plasticity of Sensorimotor Networks. Neuroscientist, 2017, 23, 185-196.	3.5	16
191	NIBS-driven brain plasticity. Archives Italiennes De Biologie, 2015, 152, 247-58.	0.4	16
192	Motor Cortical Excitability in Patients with Poststroke Epilepsy. Epilepsia, 2008, 49, 117-124.	5.1	15
193	Effects of somatosensory stimulation on the excitability of the unaffected hemisphere in chronic stroke patients. Clinics, 2008, 63, 735-740.	1.5	15
194	Statistical learning occurs during practice while high-order rule learning during rest period. Npj Science of Learning, 2021, 6, 14.	2.8	15
195	Modulation of slow cortical potentials by transcranial magnetic stimulation in humans. Neuroscience Letters, 2002, 324, 205-208.	2.1	14
196	Functional Neuroimaging in Motor Recovery After Stroke. Topics in Stroke Rehabilitation, 2005, 12, 15-21.	1.9	14
197	Beta rhythm events predict corticospinal motor output. Scientific Reports, 2019, 9, 18305.	3.3	14
198	Handgrip-Related Activation in the Primary Motor Cortex Relates to Underlying Neuronal Metabolism After Stroke. Neurorehabilitation and Neural Repair, 2014, 28, 433-442.	2.9	13

#	Article	IF	Citations
199	Translational Neurorehabilitation Research in the Third World. Stroke, 2014, 45, 1495-1497.	2.0	12
200	Crowdsourcing in Cognitive and Systems Neuroscience. Neuroscientist, 2022, 28, 425-437.	3.5	12
201	Cycling, a tool for locomotor recovery after motor lesions?. NeuroRehabilitation, 2008, 23, 67-80.	1.3	12
202	Recrudescence of Focal Stroke Symptoms during Pain Management with Hydromorphone. Frontiers in Neurology, 2016, 7, 50.	2.4	11
203	Phase-dependent offline enhancement of human motor memory. Brain Stimulation, 2021, 14, 873-883.	1.6	11
204	Phase-dependent transcranial magnetic stimulation of the lesioned hemisphere is accurate after stroke. Brain Stimulation, 2020, 13, 1354-1357.	1.6	10
205	Temporal similarity perfusion mapping: A standardized and model-free method for detecting perfusion deficits in stroke. PLoS ONE, 2017, 12, e0185552.	2.5	9
206	Effect of foreknowledge on neural activity of primary ââ,¬Å"goââ,¬Â•responses relates to response stopping and switching. Frontiers in Human Neuroscience, 2015, 9, 34.	2.0	8
207	Practice-induced plasticity in the human motor cortex. , 2003, , 90-106.		7
208	Conscious recall of different aspects of skill memory. Frontiers in Behavioral Neuroscience, 2014, 8, 233.	2.0	7
209	Distributed cortical structural properties contribute to motor cortical excitability and inhibition. Brain Structure and Function, 2018, 223, 3801-3812.	2.3	7
210	Susceptibility of consolidated procedural memory to interference is independent of its active task-based retrieval. PLoS ONE, 2019, 14, e0210876.	2.5	7
211	Reversing working memory decline in the elderly. Nature Neuroscience, 2019, 22, 686-688.	14.8	7
212	A window into the role of inhibitory and excitatory mechanisms of perception?. Journal of Physiology, 2000, 529, 283-283.	2.9	6
213	The Intersection of Offline Learning and Rehabilitation. Frontiers in Human Neuroscience, 2021, 15, 667574.	2.0	6
214	Chapter 24 Bihemispheric plasticity after acute hand deafferentation. Supplements To Clinical Neurophysiology, 2003, 56, 232-241.	2.1	5
215	Reward and plasticity: Implications for neurorehabilitation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 331-340.	1.8	5
216	Crossmodal encoding of motor sequence memories. Psychological Research, 2015, 79, 318-326.	1.7	4

#	Article	IF	Citations
217	Plasticity and recovery of function. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 163, 473-483.	1.8	4
218	Treatment of Upper Limb Paresis With Repetitive Peripheral Nerve Sensory Stimulation and Motor Training: Study Protocol for a Randomized Controlled Trial. Frontiers in Neurology, 2020, 11, 196.	2.4	4
219	High Level Bilateral Talks. Focus on "Effect of Low-Frequency Repetitive Transcranial Magnetic Stimulation on Interhemispheric Inhibition― Journal of Neurophysiology, 2005, 94, 1664-1665.	1.8	3
220	The physiology of brain-computer interfaces. Journal of Physiology, 2007, 579, 570-570.	2.9	3
221	Brain–machine interfaces and transcranial stimulation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 435-444.	1.8	3
222	Cross-modal plasticity and deafferentation. Cognitive Processing, 2004, 5, 152.	1.4	2
223	Repetitive Peripheral Sensory Stimulation as an Add-On Intervention for Upper Limb Rehabilitation in Stroke: A Randomized Trial. Neurorehabilitation and Neural Repair, 2021, 35, 1059-1064.	2.9	2
224	From bench to bedside: influence of theories of plasticity on human neurorehabilitation., 0,, 248-266.		1
225	3D-printed head models for navigated non-invasive brain stimulation. Clinical Neurophysiology, 2016, 127, 3341-3342.	1.5	1
226	Exploratory studies: a crucial step towards better hypothesisâ€driven confirmatory research in brain stimulation. Journal of Physiology, 2017, 595, 1013-1014.	2.9	1
227	The prevalence of the Val66Met polymorphism in musicians: Possible evidence for compensatory neuroplasticity from a pilot study. PLoS ONE, 2021, 16, e0245107.	2.5	1
228	Reproducibility of intracortical inhibition and facilitation using the pairedâ€pulse paradigm. Muscle and Nerve, 2000, 23, 1594-1597.	2.2	1
229	NEUROPLASTICITY. Series on Bioengineering and Biomedical Engineering, 2004, , 281-301.	0.1	1
230	Chapter 32 Modulation of cortical plasticity. Supplements To Clinical Neurophysiology, 2002, 54, 210-215.	2.1	0
231	Functional relevance of cortical plasticity., 2003,, 231-245.		0
232	Transcranial slow oscillatory stimulation drives consolidation of declarative memory by synchronization of the neocortex. Future Neurology, 2007, 2, 173-177.	0.5	0
233	Neuroplasticity. Series on Bioengineering and Biomedical Engineering, 2017, , 192-212.	0.1	0