
Vladimir G Krupkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of the curvature of the burning surface on the burning rate of a solid homogeneous energetic material. Combustion and Flame, 2019, 208, 45-50.	5.2	2
2	Instability of Solid Propellant Combustion Waves with a Subsurface Temperature Maximum. Russian Journal of Physical Chemistry B, 2019, 13, 107-111.	1.3	2
3	Burning rate of solid homogeneous energetic materials with a curved burning surface. Journal of Physics: Conference Series, 2019, 1250, 012041.	0.4	1
4	Michelson–Markstein effect in combustion of solid homogeneous energetic materials. Combustion and Flame, 2019, 205, 415-421.	5.2	1
5	ULTIMATE CONDITIONS OF BURNING THE MAGNESIUM POWDER IN NITROGEN-OXYGEN MIXTURE. Gorenie I Vzryv (Moskva) — Combustion and Explosion, 2019, , 85-91.	0.1	2
6	OSCILLATING AND CELLULAR STRUCTURES ON THE BURNING SURFACE OF SOLID HOMOGENEOUS ENERGETIC MATERIALS. International Journal of Energetic Materials and Chemical Propulsion, 2019, 18, 287-302.	0.3	1
7	ϴϣϴ϶ϴϳʹϴϳʹϴϭϴϳʹϴϫϴϳʹϴϫϴϳʹϴϔϴͽϴϴ϶ϴϴ϶ϴϴ϶ϴ;ϴʹϴʹϴϴ϶ϴϲ;ϴʹϴʹϴϴ϶ϴϴͼϴϔϴ;ϴϔϴϫϴϗʹϴϫϴ;	Ð šÐ ĩÐ¥ Ð'	" Ð ВЛЕÐ
8	Effect of the geometrical parameters of a solid with a constant surface temperature on the critical conditions of thermal explosion. Russian Journal of Physical Chemistry B, 2015, 9, 87-91.	1.3	1
9	Pulsed modes of the formation of multilayer char structures on the surface of fire-retardant intumescent paints. Russian Journal of Physical Chemistry B, 2013, 7, 448-452.	1.3	0
10	Coherent addition of two dimensional array of fiber lasers. Optics Communications, 2008, 281, 6091-6093.	2.1	7
11	Nonelectrical method of pumping solid-state lasers. Technical Physics, 1998, 43, 1069-1071.	0.7	0
12	lgnition of a wedge and cone with isothermal base by means of a heat flux. Combustion, Explosion and Shock Waves, 1991, 27, 133-137.	0.8	0
13	Ignition of a wedge and cone by a thermal flux in a homogeneous reaction. Combustion, Explosion and Shock Waves, 1990, 26, 17-22.	0.8	2
14	Critical conditions for combustion of materials made from polymer fibers. Combustion, Explosion and Shock Waves, 1986, 22, 321-326.	0.8	0
15	Effect of dissociation on the limting dimensions of the combustion of blended gaseous mixtures. Combustion, Explosion and Shock Waves, 1985, 21, 664-667.	0.8	0
16	Bubble development in a liquid in the presence of a gas source. Combustion, Explosion and Shock Waves, 1985, 21, 198-202.	0.8	0
17	Effect of heat losses on the limits and structure of the diffusion flame formed in polymer combustion. Combustion, Explosion and Shock Waves, 1983, 19, 556-559.	0.8	0
18	Effect of initial temperature and form of inert gas in the composition of an oxidizing atmosphere on the combustion of polymers. Combustion Explosion and Shock Wayes, 1982, 18, 253-255	0.8	0

VLADIMIR G KRUPKIN

#	Article	IF	CITATIONS
19	Critical conditions of diffusion combustion. Combustion, Explosion and Shock Waves, 1981, 17, 111-120.	0.8	ο
20	Combustion of polymers in a field of overloads. Combustion, Explosion and Shock Waves, 1980, 16, 400-405.	0.8	0
21	Effect of overloads on the combustion rate of compositions containing up to 80% aluminum. Combustion, Explosion and Shock Waves, 1978, 14, 304-309.	0.8	3
22	Laws governing the combustion of ballistic compositions with overloads. Combustion, Explosion and Shock Waves, 1978, 14, 716-722.	0.8	2
23	Critical conditions for combustion of thin polymer layers. Combustion, Explosion and Shock Waves, 1978, 14, 178-183.	0.8	1
24	Influence of condensed admixtures on the powder combustion rate in an acceleration field. Combustion, Explosion and Shock Waves, 1976, 11, 600-605.	0.8	0