Siddhartha Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treeâ€Inspired Design for Highâ€Efficiency Water Extraction. Advanced Materials, 2017, 29, 1704107.	11.1	494
2	Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy and Environmental Science, 2019, 12, 1558-1567.	15.6	482
3	Mesoporous, Three-Dimensional Wood Membrane Decorated with Nanoparticles for Highly Efficient Water Treatment. ACS Nano, 2017, 11, 4275-4282.	7.3	392
4	Rich Mesostructures Derived from Natural Woods for Solar Steam Generation. Joule, 2017, 1, 588-599.	11.7	363
5	Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature Materials, 2019, 18, 608-613.	13.3	343
6	Highâ€Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design. Advanced Energy Materials, 2018, 8, 1701616.	10.2	255
7	Contact Angles on a Soft Solid: From Young's Law to Neumann's Law. Physical Review Letters, 2012, 109, 236101.	2.9	156
8	Polyelectrolyte brushes: theory, modelling, synthesis and applications. Soft Matter, 2015, 11, 8550-8583.	1.2	131
9	Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter, 2014, 10, 7558-7568.	1.2	118
10	Bioinspired Solarâ€Heated Carbon Absorbent for Efficient Cleanup of Highly Viscous Crude Oil. Advanced Functional Materials, 2019, 29, 1900162.	7.8	116
11	A Highâ€Performance, Lowâ€Tortuosity Woodâ€Carbon Monolith Reactor. Advanced Materials, 2017, 29, 1604257.	11.1	110
12	Capillary Pressure and Contact Line Force on a Soft Solid. Physical Review Letters, 2012, 108, 094301.	2.9	96
13	Liquid drops attract or repel by the inverted Cheerios effect. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7403-7407.	3.3	95
14	Fireâ€Resistant Structural Material Enabled by an Anisotropic Thermally Conductive Hexagonal Boron Nitride Coating. Advanced Functional Materials, 2020, 30, 1909196.	7.8	94
15	Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye-Hückel limit. Physical Review E, 2008, 77, 037303.	0.8	82
16	Elastic deformation due to tangential capillary forces. Physics of Fluids, 2011, 23, .	1.6	81
17	Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hückel linearization. Journal of Colloid and Interface Science, 2015, 445, 357-363.	5.0	80
18	Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping Electric Double Layers. Analytica Chimica Acta, 2013, 804, 159-166.	2.6	78

#	Article	IF	CITATIONS
19	Effect of Conductivity Variations within the Electric Double Layer on the Streaming Potential Estimation in Narrow Fluidic Confinements. Langmuir, 2010, 26, 11589-11596.	1.6	69
20	The Effect of Droplet Sizes on Overspray in Aerosolâ€Jet Printing. Advanced Engineering Materials, 2018, 20, 1701084.	1.6	67
21	Early regimes of capillary filling. Physical Review E, 2012, 86, 067301.	0.8	66
22	Wetting dynamics of a water nanodrop on graphene. Physical Chemistry Chemical Physics, 2016, 18, 23482-23493.	1.3	65
23	High-Performance, Scalable Wood-Based Filtration Device with a Reversed-Tree Design. Chemistry of Materials, 2020, 32, 1887-1895.	3.2	65
24	Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. Physical Review E, 2011, 84, 012501.	0.8	60
25	Different regimes in vertical capillary filling. Physical Review E, 2013, 87, 063005.	0.8	57
26	Flexible, Bio-Compatible Nanofluidic Ion Conductor. Chemistry of Materials, 2018, 30, 7707-7713.	3.2	54
27	Redefining electrical double layer thickness in narrow confinements: Effect of solvent polarization. Physical Review E, 2012, 85, 051508.	0.8	51
28	Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density. Journal of Applied Physics, 2015, 117, .	1.1	51
29	Concentration Polarization in Translocation of DNA through Nanopores and Nanochannels. Physical Review Letters, 2012, 108, 138101.	2.9	44
30	Electric double layer force between charged surfaces: Effect of solvent polarization. Journal of Chemical Physics, 2013, 138, 114703.	1.2	44
31	Magnetohydrodynamics in narrow fluidic channels in presence of spatially non-uniform magnetic fields: framework for combined magnetohydrodynamic and magnetophoretic particle transport. Microfluidics and Nanofluidics, 2012, 13, 799-807.	1.0	43
32	Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	40
33	Effect of impurities in description of surface nanobubbles. Physical Review E, 2010, 82, 056310.	0.8	37
34	Effect of finite ion sizes in an electrostatic potential distribution for a charged soft surface in contact with an electrolyte solution. Physical Review E, 2014, 89, 012307.	0.8	37
35	Massively Enhanced Electroosmotic Transport in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes. Journal of Physical Chemistry B, 2017, 121, 3130-3141.	1.2	37
36	Inkwells for on-demand deposition rate measurement in aerosol-jet based 3D printing. Journal of Micromechanics and Microengineering, 2017, 27, 097001.	1.5	36

#	Article	IF	CITATIONS
37	Bacterial floc mediated rapid streamer formation in creeping flows. Scientific Reports, 2015, 5, 13070.	1.6	35
38	Solvo-thermal microwave-powered two-dimensional material exfoliation. Chemical Communications, 2016, 52, 5757-5760.	2.2	33
39	Aerosolâ€Jet Printed Fillets for Wellâ€Formed Electrical Connections between Different Leveled Surfaces. Advanced Materials Technologies, 2017, 2, 1700178.	3.0	33
40	Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets. Scientific Reports, 2014, 4, 7126.	1.6	31
41	Effect of finite ion sizes in electric double layer mediated interaction force between two soft charged plates. RSC Advances, 2015, 5, 46873-46880.	1.7	28
42	Mapping and Quantifying Surface Charges on Clay Nanoparticles. Langmuir, 2015, 31, 10469-10476.	1.6	28
43	Electrostatics of soft charged interfaces with pH-dependent charge density: effect of consideration of appropriate hydrogen ion concentration distribution. RSC Advances, 2015, 5, 4493-4501.	1.7	28
44	Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides. Scientific Reports, 2016, 6, 22503.	1.6	28
45	Ultrathin and Ultrasensitive Printed Carbon Nanotube-Based Temperature Sensors Capable of Repeated Uses on Surfaces of Widely Varying Curvatures and Wettabilities. ACS Applied Materials & Interfaces, 2021, 13, 10257-10270.	4.0	28
46	Influence of Streaming Potential on the Transport and Separation of Charged Spherical Solutes in Nanochannels Subjected to Particleâ^'Wall Interactions. Langmuir, 2009, 25, 9863-9872.	1.6	27
47	Efficient electrochemomechanical energy conversion in nanochannels grafted with end-charged polyelectrolyte brushes at medium and high salt concentration. Soft Matter, 2018, 14, 5246-5255.	1.2	27
48	Filling of charged cylindrical capillaries. Physical Review E, 2014, 90, 043011.	0.8	26
49	Electrostatic potential distribution of a soft spherical particle with a charged core and pH-dependent charge density. Colloids and Surfaces B: Biointerfaces, 2015, 127, 143-147.	2.5	26
50	Directâ€Write Printed, Solidâ€Core Solenoid Inductors with Commercially Relevant Inductances. Advanced Materials Technologies, 2019, 4, 1800312.	3.0	25
51	Influences of streaming potential on cross stream migration of flexible polymer molecules in nanochannel flows. Journal of Chemical Physics, 2009, 130, 244904.	1.2	24
52	Ring stains in the presence of electrokinetic interactions. Physical Review E, 2012, 85, 046311.	0.8	24
53	Wenzel and Cassie-Baxter states of an electrolytic drop on charged surfaces. Physical Review E, 2012, 86, 011603.	0.8	24
54	Revisiting the strong stretching theory for pH-responsive polyelectrolyte brushes: effects of consideration of excluded volume interactions and an expanded form of the mass action law. Soft Matter, 2019, 15, 559-574.	1.2	23

#	Article	IF	CITATIONS
55	Roughness-Induced Chemical Heterogeneity Leads to Large Hydrophobicity in Wetting-Translucent Nanostructures. Journal of Physical Chemistry C, 2017, 121, 10010-10017.	1.5	22
56	Anomalous Shrinking–Swelling of Nanoconfined End-Charged Polyelectrolyte Brushes: Interplay of Confinement and Electrostatic Effects. Journal of Physical Chemistry B, 2016, 120, 6848-6857.	1.2	21
57	Dynamics of liquid droplets in an evaporating drop: liquid droplet "coffee stain―effect. RSC Advances, 2012, 2, 8390.	1.7	20
58	Wettability of nanostructured hexagonal boron nitride surfaces: molecular dynamics insights on the effect of wetting anisotropy. Physical Chemistry Chemical Physics, 2020, 22, 2488-2497.	1.3	20
59	Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels. Colloids and Surfaces B: Biointerfaces, 2007, 58, 203-217.	2.5	19
60	Drop deposition on under-liquid low energy surfaces. Soft Matter, 2013, 9, 7437.	1.2	19
61	Scaling Laws and Ionic Current Inversion in Polyelectrolyte-Grafted Nanochannels. Journal of Physical Chemistry B, 2015, 119, 12714-12726.	1.2	19
62	Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory. Soft Matter, 2019, 15, 5973-5986.	1.2	19
63	Direct-write printed broadband inductors. Additive Manufacturing, 2019, 30, 100843.	1.7	19
64	Densely Grafted Polyelectrolyte Brushes Trigger "Water-in-Salt―like Scenarios and Ultraconfinement Effect. Matter, 2020, 2, 1509-1521.	5.0	19
65	On the wetting translucency of hexagonal boron nitride. Physical Chemistry Chemical Physics, 2020, 22, 7710-7718.	1.3	19
66	Electric double-layer interactions in a wedge geometry: Change in contact angle for drops and bubbles. Physical Review E, 2013, 88, 033021.	0.8	17
67	Ionic Diffusoosmosis in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes. Journal of Physical Chemistry B, 2018, 122, 7450-7461.	1.2	17
68	Effect of impurities in the description of surface nanobubbles: Role of nonidealities in the surface layer. Physical Review E, 2011, 83, 066315.	0.8	16
69	Shape-driven arrest of coffee stain effect drives the fabrication of carbon-nanotube-graphene-oxide inks for printing embedded structures and temperature sensors. Nanoscale, 2019, 11, 23402-23415.	2.8	16
70	Quantification of Mono- and Multivalent Counterion-Mediated Bridging in Polyelectrolyte Brushes. Macromolecules, 2021, 54, 4154-4163.	2.2	16
71	Transport and Separation of Charged Macromolecules under Nonlinear Electromigration in Nanochannels. Langmuir, 2008, 24, 7704-7710.	1.6	15
72	Effect of added salt on preformed surface nanobubbles: A scaling estimate. Physical Review E, 2011, 84, 036303.	0.8	15

#	Article	IF	CITATIONS
73	Electric-double-layer potential distribution in multiple-layer immiscible electrolytes: Effect of finite ion sizes. Physical Review E, 2012, 85, 012502.	0.8	15
74	Coarse-grained modelling of DNA plectoneme pinning in the presence of base-pair mismatches. Nucleic Acids Research, 2020, 48, 10713-10725.	6.5	15
75	Overscreening, Co-Ion-Dominated Electroosmosis, and Electric Field Strength Mediated Flow Reversal in Polyelectrolyte Brush Functionalized Nanochannels. ACS Nano, 2021, 15, 6507-6516.	7.3	15
76	Effect of confinement on the collapsing mechanism of a flexible polymer chain. Journal of Chemical Physics, 2010, 133, 174904.	1.2	14
77	Dynamical theory of the inverted cheerios effect. Soft Matter, 2017, 13, 6000-6010.	1.2	14
78	Effect of Steam-Assisted Gravity Drainage Produced Water Properties on Oil/Water Transient Interfacial Tension. Energy & Fuels, 2016, 30, 10714-10720.	2.5	13
79	Compression of polymer brushes in the weak interpenetration regime: scaling theory and molecular dynamics simulations. Soft Matter, 2017, 13, 4159-4166.	1.2	13
80	Charge inversion and external salt effect in semi-permeable membrane electrostatics. Journal of Membrane Science, 2017, 533, 364-377.	4.1	13
81	Theory of diffusioosmosis in a charged nanochannel. Physical Chemistry Chemical Physics, 2018, 20, 10204-10212.	1.3	13
82	Cracks in the 3D-printed conductive traces of silver nanoparticle ink. Journal of Micromechanics and Microengineering, 2019, 29, 097001.	1.5	13
83	Effect of Gas Flow Rates on Quality of Aerosol Jet Printed Traces With Nanoparticle Conducting Ink. Journal of Electronic Packaging, Transactions of the ASME, 2020, 142, .	1.2	13
84	Highly enhanced liquid flows <i>via</i> thermoosmotic effects in soft and charged nanochannels. Physical Chemistry Chemical Physics, 2018, 20, 24300-24316.	1.3	12
85	Thermomechanical responses of microfluidic cantilever capture DNA melting and properties of DNA premelting states using picoliters of DNA solution. Applied Physics Letters, 2019, 114, .	1.5	12
86	All-atom molecular dynamics simulations of weak polyionic brushes: influence of charge density on the properties of polyelectrolyte chains, brush-supported counterions, and water molecules. Soft Matter, 2020, 16, 7808-7822.	1.2	12
87	3D Printed Microdroplet Curing: Unravelling the Physics of On-Spot Photopolymerization. ACS Applied Polymer Materials, 2020, 2, 966-976.	2.0	12
88	Elastocapillary instability under partial wetting conditions: Bending versus buckling. Physical Review E, 2011, 84, 061601.	0.8	11
89	Ring stains in the presence of electromagnetohydrodynamic interactions. Physical Review E, 2012, 86, 056317.	0.8	11
90	Electric double layer effects in water separation from water-in-oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 216-222.	2.3	11

#	Article	IF	CITATIONS
91	Positive zeta potential of a negatively charged semi-permeable plasma membrane. Applied Physics Letters, 2017, 111, .	1.5	11
92	Ion at Air–Water Interface Enhances Capillary Wave Fluctuations: Energetics of Ion Adsorption. Journal of the American Chemical Society, 2018, 140, 12853-12861.	6.6	11
93	Interactions of gold and silica nanoparticles with plasma membranes get distinguished by the van der Waals forces: Implications for drug delivery, imaging, and theranostics. Colloids and Surfaces B: Biointerfaces, 2019, 177, 433-439.	2.5	11
94	Hydrogen Bonding and Its Effect on the Orientational Dynamics of Water Molecules inside Polyelectrolyte Brush-Induced Soft and Active Nanoconfinement. Macromolecules, 2021, 54, 2011-2021.	2.2	11
95	All-Atom Molecular Dynamics Simulations of the Temperature Response of Densely Grafted Polyelectrolyte Brushes. Macromolecules, 2021, 54, 6342-6354.	2.2	11
96	Wetting Dynamics on Solvophilic, Soft, Porous, and Responsive Surfaces. Macromolecules, 2021, 54, 584-596.	2.2	11
97	Role of plasma membrane surface charges in dictating the feasibility of membrane-nanoparticle interactions. Applied Physics Letters, 2017, 111, .	1.5	10
98	Electric double layer electrostatics of lipidâ€bilayerâ€encapsulated nanoparticles: Toward a better understanding of protocell electrostatics. Electrophoresis, 2018, 39, 752-759.	1.3	10
99	Polyelectrolyte brush bilayers in weak interpenetration regime: Scaling theory and molecular dynamics simulations. Physical Review E, 2018, 97, 032503.	0.8	10
100	Electrokinetics in nanochannels grafted with poly-zwitterionic brushes. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	10
101	Quantifying Water Friction in Misaligned Graphene Channels under Ångström Confinements. ACS Applied Materials & Interfaces, 2020, 12, 35757-35764.	4.0	10
102	Ionic diffusioosmotic transport in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory. Physics of Fluids, 2020, 32, .	1.6	10
103	Thermo-osmotic transport in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory. Journal of Fluid Mechanics, 2021, 917, .	1.4	10
104	Wood Ionic Cable. Small, 2021, 17, e2008200.	5.2	10
105	Coalescence of Microscopic Polymeric Drops: Effect of Drop Impact Velocities. Langmuir, 2021, 37, 13512-13526.	1.6	10
106	Simultaneous Energy Generation and Flow Enhancement (<i>Electroslippage Effect</i>) in Polyelectrolyte Brush Functionalized Nanochannels. ACS Nano, 2021, 15, 17337-17347.	7.3	9
107	Electric-double-layer potential distribution in multiple-layer immiscible electrolytes. Physical Review E, 2011, 84, 022502.	0.8	8
108	Scaling Relationships for Spherical Polymer Brushes Revisited. Journal of Physical Chemistry B, 2016, 120, 5272-5277.	1.2	8

#	Article	IF	CITATIONS
109	Surface charges promote nonspecific nanoparticle adhesion to stiffer membranes. Applied Physics Letters, 2018, 112, .	1.5	8
110	Formation and Properties of a Self-Assembled Nanoparticle-Supported Lipid Bilayer Probed through Molecular Dynamics Simulations. Langmuir, 2020, 36, 5524-5533.	1.6	8
111	Lipid flip-flop and desorption from supported lipid bilayers is independent of curvature. PLoS ONE, 2020, 15, e0244460.	1.1	8
112	Drop spreading on a superhydrophobic surface: pinned contact line and bending liquid surface. Physical Chemistry Chemical Physics, 2017, 19, 14442-14452.	1.3	7
113	Interaction between a water drop and holey graphene: retarded imbibition and generation of novel water–graphene wetting states. Physical Chemistry Chemical Physics, 2017, 19, 27421-27434.	1.3	7
114	Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant. Langmuir, 2018, 34, 1760-1766.	1.6	7
115	Supersolvophobic Soft Wetting: Nanoscale Elastocapillarity, Adhesion, and Retention of a Drop Behaving as a Nanoparticle. Matter, 2019, 1, 1262-1273.	5.0	7
116	lonic current in nanochannels grafted with pHâ€responsive polyelectrolyte brushes modeled using augmented strong stretching theory. Electrophoresis, 2020, 41, 554-561.	1.3	7
117	Theoretical study on the massively augmented electro-osmotic water transport in polyelectrolyte brush functionalized nanoslits. Physical Review E, 2020, 102, 013103.	0.8	7
118	Charge-Density-Specific Response of Grafted Polyelectrolytes to Electric Fields: Bending or Tilting?. Macromolecules, 2022, 55, 2413-2423.	2.2	7
119	Effect of electric double layer on electro-spreading dynamics of electrolyte drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 209-217.	2.3	6
120	Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pHâ€responsive endâ€charged polyelectrolyte brushes. Electrophoresis, 2017, 38, 720-729.	1.3	6
121	Water–Holey-Graphene Interactions: Route to Highly Enhanced Water-Accessible Graphene Surface Area. ACS Applied Nano Materials, 2018, 1, 5907-5919.	2.4	6
122	Lubrication in polymer-brush bilayers in the weak interpenetration regime: Molecular dynamics simulations and scaling theories. Physical Review E, 2018, 98, 022503.	0.8	6
123	Dynamics of a Water Nanodrop through a Holey Graphene Matrix: Role of Surface Functionalization, Capillarity, and Applied Forcing. Journal of Physical Chemistry C, 2018, 122, 12243-12250.	1.5	6
124	Soft wetting: Models based on energy dissipation or on force balance are equivalent. Proceedings of the United States of America, 2018, 115, E7233.	3.3	6
125	Fully printed resonance-free broadband conical inductors using engineered magnetic inks. Additive Manufacturing, 2021, 44, 102034.	1.7	6
126	Conditions for spontaneous oil–water separation with oil–water separators. RSC Advances, 2015, 5, 80184-80191.	1.7	5

8

#	Article	IF	CITATIONS
127	Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime. Colloids and Surfaces B: Biointerfaces, 2016, 147, 180-190.	2.5	5
128	Elasto-electro-capillarity: drop equilibrium on a charged, elastic solid. Soft Matter, 2017, 13, 554-566.	1.2	4
129	Electrostatically motivated design of biomimetic nanoparticles: Promoting specific adhesion and preventing nonspecific adhesion simultaneously. Applied Physics Letters, 2018, 112, .	1.5	4
130	Water-free Localization of Anion at Anode for Small-Concentration Water-in-Salt Electrolytes Confined in Boron-Nitride Nanotube. Cell Reports Physical Science, 2020, 1, 100246.	2.8	4
131	Contribution of interfacial electrostriction in surface tension. Journal of Colloid and Interface Science, 2013, 400, 130-134.	5.0	3
132	Effect of solvent polarization on electroosmotic transport in a nanofluidic channel. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	3
133	Electrostatics and Interactions of an Ionizable Silica Nanoparticle Approaching a Plasma Membrane. Langmuir, 2019, 35, 4171-4181.	1.6	3
134	Boron Nitride Nanotube–Salt–Water Hybrid: Toward Zero-Dimensional Liquid Water and Highly Trapped Immobile Single Anions Inside One-Dimensional Nanostructures. Journal of Physical Chemistry C, 2021, 125, 14006-14013.	1.5	3
135	Atomistic explorations of mechanisms dictating the shear thinning behavior and 3D printability of graphene flake infused epoxy inks. Physical Chemistry Chemical Physics, 2021, 23, 24634-24645.	1.3	3
136	Non-monotonic dependence of fluid dissipation on fluid density in fluid-coupled nanoresonators. Applied Physics Letters, 2019, 115, 251601.	1,5	2
137	Strong stretching theory for pH-responsive polyelectrolyte brushes in large salt concentrations. Physical Chemistry Chemical Physics, 2020, 22, 13536-13553.	1.3	2
138	Nanovesicles Versus Nanoparticle-Supported Lipid Bilayers: Massive Differences in Bilayer Structures and in Diffusivities of Lipid Molecules and Nanoconfined Water. Langmuir, 2019, 35, 2702-2708.	1.6	1
139	Coating for preventing nonspecific adhesion mediated biofouling in salty systems: Effect of the electrostatic and van der waals interactions. Electrophoresis, 2020, 41, 657-665.	1.3	1
140	Analytical solutions for nonionic and ionic diffusio-osmotic transport at soft and porous interfaces. Physics of Fluids, 2022, 34, .	1.6	1
141	Physically Soft Magnetic Films and Devices: Fabrication, Properties, Printability, and Applications. Journal of Materials Chemistry C, 0, , .	2.7	1
142	Multiphysics study of electrochemical migration in ceramic capacitors. , 2015, , .		0
143	Role of the Shuttleworth effect in adhesion on elastic surfaces. MRS Advances, 2016, 1, 621-630.	0.5	0
144	Interplay of Local Heating, Nanoconfinement, and Tunable Liquid–Wall Interactions Drive Rapid Imbibition and Pronounced Mixing Between Two Immiscible Liquids. Journal of Physical Chemistry Letters, 0, , 5137-5142.	2.1	0