E Yu Koroteeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3211993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal signatures of liquid droplets on a skin induced by emotional sweating. Quantitative InfraRed Thermography Journal, 2022, 19, 115-125.	4.2	4
2	Infrared-based visualization of exhalation flows while wearing protective face masks. Physics of Fluids, 2022, 34, 011705.	4.0	12
3	Time-resolved thermographic analysis of the near-wall flow of a submerged impinging water jet. Experimental Thermal and Fluid Science, 2021, 121, 110264.	2.7	2
4	Pulsed discharge-induced high-speed flow near a dielectric ledge. Experiments in Fluids, 2021, 62, 1.	2.4	4
5	Velocity-Field Measurements in a Fluid Boundary Layer Based on High-Speed Thermography. Doklady Physics, 2020, 65, 100-102.	0.7	3
6	The effect of column-shaped discharge duration on induced high-speed flow dynamics. Physics of Fluids, 2020, 32, 096103.	4.0	0
7	Analysis of large visualization datasets for thermographic studies in fluid dynamics. Scientific Visualization, 2020, 12, .	0.4	1
8	Analysis of the Visualization Region in Near-Wall Fluid Layer by High-Speed Infrared Thermography. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta,) Tj ETQq0 0 0 rgE	BT / O .#erloo	ck 120 Tf 50 45
9	Evolution and fluid dynamic effects of pulsed column-shaped plasma. Experimental Thermal and Fluid Science, 2019, 109, 109868.	2.7	5
10	Simulating particle inertia for velocimetry measurements of a flow behind an expanding shock wave. Physics of Fluids, 2018, 30, .	4.0	9
11	Experimental investigation of the flow dynamics and boundary layer in a shock tube with discharge section based on digital panoramic methods. AIP Conference Proceedings, 2018, , .	0.4	3
12	Experimental and numerical investigation of a flow induced by a pulsed plasma column. Physics of Fluids, 2018, 30, .	4.0	6
13	Application of high-speed thermographic visualization for validation of numerical simulations of liquid boundary layer flows. Scientific Visualization, 2018, 10, 112-121.	0.4	0
14	Shock wave interaction with a thermal layer produced by a plasma sheet actuator. Journal Physics D: Applied Physics, 2017, 50, 085204.	2.8	26
15	Infrared Thermography and Image Analysis of Dynamic Processes around the Facial Area. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2017, 72, 595-600.	0.4	3
16	Effect of Axial Pressure of Fibres on Deformation of Fibre Carrier Flanges During Optical Glass Fibre Winding. Fibre Chemistry, 2017, 49, 122-124.	0.2	2
17	An optical study of high-pressure water-jet dynamics. Moscow University Physics Bulletin (English) Tj ETQq1 1 0	.784314 rg 0.4	gBT ₄ /Overlock

E Yu Koroteeva

#	Article	IF	CITATIONS
19	Numerical modeling and design of a disk-type rotating permanent magnet induction pump. Fusion Engineering and Design, 2016, 106, 85-92.	1.9	9
20	Numerical and experimental study of shock waves emanating from an open-ended rectangular tube. Shock Waves, 2016, 26, 269-277.	1.9	8
21	Simulation of liquid metal flow induced by counter-rotating permanent magnets in a rectangular crucible. Magnetohydrodynamics, 2015, 51, 37-44.	0.3	8
22	Investigation of the interaction of a shock wave with the zone of a pulsed surface discharge in a rectangular channel. Moscow University Physics Bulletin (English Translation of Vestnik) Tj ETQq0 0 0 rgBT /Over	loock:41.0 Tf	5 © 617 Td (N
23	The development of turbulence behind a shock wave front moving in an inhomogeneous region. Technical Physics Letters, 2012, 38, 519-522.	0.7	1
24	Gas-dynamic phenomena accompanying shock-wave interactions with the cooling plasma of a pulsed surface discharge. Doklady Physics, 2011, 56, 423-426.	0.7	3
25	Calculation of spinneret feeder elements for creep. Fibre Chemistry, 2008, 40, 548-552.	0.2	0
26	High-speed IR thermography of submerged turbulent water jets. , 0, , .		0
27	Thermography-based remote detection of psycho-emotional states. , 0, , .		2
28	Estimating turbulent boundary layer characteristics by high-speed infrared thermography. , 0, , .		0