Marie C Wahlgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3211934/publications.pdf

Version: 2024-02-01

83 papers 3,844 citations

201674 27 h-index 61 g-index

84 all docs 84 docs citations

84 times ranked 4563 citing authors

#	Article	IF	CITATIONS
1	Shear-induced nanostructural changes in micelles formed by sugar-based surfactants with varied anomeric configuration. Journal of Colloid and Interface Science, 2022, 606, 328-336.	9.4	9
2	Aggregation Behavior of Structurally Similar Therapeutic Peptides Investigated by $\langle \sup 1 \langle \sup \rangle H$ NMR and All-Atom Molecular Dynamics Simulations. Molecular Pharmaceutics, 2022, 19, 904-917.	4.6	12
3	Oil-Based Delivery Control Release System Targeted to the Later Part of the Gastrointestinal Tract—A Mechanistic Study. Pharmaceutics, 2022, 14, 896.	4.5	1
4	Deep eutectic solvents for the preservation of concentrated proteins: the case of lysozyme in 1 : 2 choline chloride : glycerol. Green Chemistry, 2022, 24, 4437-4442.	9.0	17
5	Tail unsaturation tailors the thermodynamics and rheology of a self-assembled sugar-based surfactant. Journal of Colloid and Interface Science, 2021, 585, 178-183.	9.4	8
6	Molecular structure of maltoside surfactants controls micelle formation and rheological behavior. Journal of Colloid and Interface Science, 2021, 581, 895-904.	9.4	13
7	Capturing progression of formal knowledge and employability skills by monitoring case discussions in class. Teaching in Higher Education, 2021, 26, 246-264.	2.6	8
8	Mucoadhesion: mucin-polymer molecular interactions. International Journal of Pharmaceutics, 2021, 610, 121245.	5.2	18
9	The Impact of Glycerol on an Affibody Conformation and Its Correlation to Chemical Degradation. Pharmaceutics, 2021, 13, 1853.	4.5	7
10	Separation and zeta-potential determination of proteins and their oligomers using electrical asymmetrical flow field-flow fractionation (EAF4). Journal of Chromatography A, 2020, 1633, 461625.	3.7	15
11	An integrative toolbox to unlock the structure and dynamics of protein–surfactant complexes. Nanoscale Advances, 2020, 2, 4011-4023.	4.6	7
12	Characterization of binding between model protein GA-Z and human serum albumin using asymmetrical flow field-flow fractionation and small angle X-ray scattering. PLoS ONE, 2020, 15, e0242605.	2.5	4
13	Title is missing!. , 2020, 15, e0242605.		O
14	Title is missing!. , 2020, 15, e0242605.		0
15	Title is missing!. , 2020, 15, e0242605.		О
16	Title is missing!. , 2020, 15, e0242605.		0
17	Dehydration affects drug transport over nasal mucosa. Drug Delivery, 2019, 26, 831-840.	5.7	6
18	Effect of the Anomeric Configuration on the Micellization of Hexadecylmaltoside Surfactants. Langmuir, 2019, 35, 13904-13914.	3.5	14

#	Article	IF	Citations
19	In Vitro Methods to Study Colon Release: State of the Art and An Outlook on New Strategies for Better In-Vitro Biorelevant Release Media. Pharmaceutics, 2019, 11, 95.	4.5	38
20	A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers: Granules, dissolved starch, and non-solvent precipitates. PLoS ONE, 2019, 14, e0210690.	2.5	26
21	Characterization of non-solvent precipitated starch using asymmetrical flow field-flow fractionation coupled with multiple detectors. Carbohydrate Polymers, 2019, 206, 21-28.	10.2	6
22	Effects of starch granules differing in size and morphology from different botanical sources and their mixtures on the characteristics of Pickering emulsions. Food Hydrocolloids, 2019, 89, 844-855.	10.7	19
23	Pickering emulsions based on CaCl2-gelatinized oat starch. Food Hydrocolloids, 2018, 82, 288-295.	10.7	10
24	Sifting segregation of ideal blends in a two-hopper tester: Segregation profiles and segregation magnitudes. Powder Technology, 2018, 331, 60-67.	4.2	10
25	Will a water gradient in oral mucosa affect transbuccal drug absorption?. Journal of Drug Delivery Science and Technology, 2018, 48, 338-345.	3.0	7
26	Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions. Carbohydrate Polymers, 2017, 157, 558-566.	10.2	79
27	Preparation and Characterization of Starch Particles for Use in Pickering Emulsions. Cereal Chemistry, 2016, 93, 116-124.	2.2	78
28	Comparative Emulsifying Properties of Octenyl Succinic Anhydride (OSA)-Modified Starch: Granular Form vs Dissolved State. PLoS ONE, 2016, 11, e0160140.	2.5	38
29	Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid) in Simulated Intestinal Fluids. PLoS ONE, 2015, 10, e0140709.	2.5	3
30	Do surface active parenteral formulations cause inflammation?. International Journal of Pharmaceutics, 2015, 484, 246-251.	5.2	2
31	Barrier properties of heat treated starch Pickering emulsions. Journal of Colloid and Interface Science, 2015, 450, 182-188.	9.4	97
32	Amperometric In Vitro Monitoring of Penetration through Skin Membrane. Electroanalysis, 2015, 27, 111-117.	2.9	5
33	Formulation of Emulsions. Contemporary Food Engineering, 2015, , 51-100.	0.2	1
34	Particle-stabilized Emulsions. Contemporary Food Engineering, 2015, , 101-122.	0.2	1
35	Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458, 48-62.	4.7	317
36	Quantifying the release of lactose from polymer matrix tablets with an amperometric biosensor utilizing cellobiose dehydrogenase. International Journal of Pharmaceutics, 2014, 468, 121-132.	5.2	13

#	Article	IF	CITATIONS
37	Effects of Added Surfactant on Swelling and Molecular Transport in Drug-Loaded Tablets Based on Hydrophobically Modified Poly(acrylic acid). Journal of Physical Chemistry B, 2014, 118, 9757-9767.	2.6	7
38	The Use of Micro- and Nanoparticles in the Stabilisation of Pickering-Type Emulsions for Topical Delivery. Current Pharmaceutical Biotechnology, 2014, 14, 1222-1234.	1.6	23
39	Surfactants modify the release from tablets made of hydrophobically modified poly (acrylic acid). Results in Pharma Sciences, 2013, 3, 7-14.	4.2	12
40	Using NMR Chemical Shift Imaging To Monitor Swelling and Molecular Transport in Drug-Loaded Tablets of Hydrophobically Modified Poly(acrylic acid): Methodology and Effects of Polymer (In)solubility. Langmuir, 2013, 29, 13898-13908.	3.5	17
41	Monitoring and stimulating development of integrated professional skills in university study programmes. European Journal of Higher Education, 2013, 3, 62-73.	2.7	3
42	Comparison of in vitro methods of measuring mucoadhesion: Ellipsometry, tensile strength and rheological measurements. Colloids and Surfaces B: Biointerfaces, 2012, 92, 353-359.	5.0	84
43	Characterization of starch Pickering emulsions for potential applications in topical formulations. International Journal of Pharmaceutics, 2012, 428, 1-7.	5. 2	205
44	Pore formation and pore closure in poly(D,L-lactide-co-glycolide) films. Journal of Controlled Release, 2011, 150, 142-149.	9.9	36
45	Reversible Conformational Transitions of a Polymer Brush Containing Boronic Acid and its Interaction with Mucin Glycoprotein. Macromolecular Bioscience, 2011, 11, 275-284.	4.1	31
46	Development of mass transport resistance in poly(lactide-co-glycolide) films and particles – A mechanistic study. International Journal of Pharmaceutics, 2011, 409, 194-202.	5.2	16
47	The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review. International Journal of Pharmaceutics, 2011, 415, 34-52.	5. 2	1,002
48	The effects of lipophilic substances on the shape of erythrocytes demonstrated by a new in vitro-method. European Journal of Pharmaceutical Sciences, 2009, 36, 458-464.	4.0	3
49	The Effect of Starch Material, Encapsulated Protein and Production Conditions on the Protein Release from Starch Microspheres. Journal of Pharmaceutical Sciences, 2009, 98, 3802-3815.	3.3	13
50	Changes in starch structure during manufacturing of starch microspheres for use in parenteral drug formulations: Effects of temperature treatment. Carbohydrate Polymers, 2009, 75, 157-165.	10.2	12
51	Oral-based controlled release formulations using poly(acrylic acid) microgels. Drug Development and Industrial Pharmacy, 2009, 35, 922-929.	2.0	15
52	Recrystallization of waxy maize starch during manufacturing of starch microspheres for drug delivery: Optimization by experimental design. Carbohydrate Polymers, 2007, 68, 568-576.	10.2	14
53	Recrystallization of waxy maize starch during manufacturing of starch microspheres for drug delivery: Influence of excipients. Carbohydrate Polymers, 2007, 69, 732-741.	10.2	11
54	From Starch to Starch Microspheres: Factors Controlling the Microspheres Quality. Starch/Staerke, 2006, 58, 381-390.	2.1	26

#	Article	IF	CITATIONS
55	Recrystallisation behaviour of native and processed waxy maize starch in relation to the molecular characteristics. Carbohydrate Polymers, 2004, 57, 389-400.	10.2	26
56	Formation of Amylose-Lipid Complexes and Effects of Temperature Treatment. Part 1. Monoglycerides. Starch/Staerke, 2003, 55, 61-71.	2.1	140
57	Formation of Amylose-Lipid Complexes and Effects of Temperature Treatment. Part 2. Fatty Acids. Starch/Staerke, 2003, 55, 138-149.	2.1	196
58	Non-invasive monitoring of protein adsorption and removal in a turbulent flow cell. Colloids and Surfaces B: Biointerfaces, 2001, 20, 9-25.	5.0	11
59	Detergent-Induced Removal of β-Lactoglobulin from Stainless Steel Surfaces as Influenced by Surface Pretreatment. Journal of Colloid and Interface Science, 1999, 220, 471-473.	9.4	5
60	THE REMOVAL OF ?-LACTOGLOBULIN FROM STAINLESS STEEL SURFACES AT HIGH AND LOW TEMPERATURE AS INFLUENCED BY THE TYPE AND CONCENTRATION OF CLEANING AGENT. Journal of Food Process Engineering, 1998, 21, 485-501.	2.9	9
61	Some Surface-related Aspects of the Cleaning of New and Reused Stainless-steel Surfaces Fouled by Protein. International Dairy Journal, 1998, 8, 925-933.	3.0	14
62	Removal of T4 Lysozyme from Silicon Oxide Surfaces by Sodium Dodecyl Sulfate:Â A Comparison between Wild Type Protein and a Mutant with Lower Thermal Stability. Langmuir, 1997, 13, 8-13.	3.5	34
63	THE INTERACTIONS IN SOLUTION BETWEEN NONIONIC SURFACTANTS AND GLOBULAR PROTEINS: EFFECTS ON CLOUD POINT. Journal of Dispersion Science and Technology, 1997, 18, 449-458.	2.4	12
64	Ellipsometery and radio-labelling studies on the adsorption of human serum albumin (HSA) and anti-HSA to hydrophobic silicon. Colloids and Surfaces B: Biointerfaces, 1997, 10, 61-66.	5.0	3
65	Simple Models for Adsorption Kinetics and Their Correlation to the Adsorption of \hat{l}^2 -Lactoglobulin A and B. Journal of Colloid and Interface Science, 1997, 188, 121-129.	9.4	42
66	Adsorption from lipase-surfactant solutions onto methylated silica surfaces. Colloids and Surfaces B: Biointerfaces, 1996, 6, 27-36.	5.0	21
67	Time and temperature aspects of \hat{l}^2 -lactoglobulin removal from methylated silica surfaces by sodium dodecyl sulphate. Colloids and Surfaces B: Biointerfaces, 1996, 6, 317-328.	5.0	12
68	Removal of lysozyme from methylated silicon oxide surfaces by a non-ionic surfactant, pentaethylene glycol mono n-dodecyl ether (C12E5). Colloids and Surfaces B: Biointerfaces, 1996, 6, 63-69.	5.0	7
69	β-Lactoglobulin fouling and its removal upon rinsing and by SDS as influenced by surface characteristics, temperature and adsorption time. Journal of Food Engineering, 1996, 30, 43-60.	5.2	29
70	Structural Stability Effects on the Adsorption and Dodecyltrimethylammonium Bromide-Mediated Elutability of Bacteriophage T4 Lysozyme at Silica Surfaces. Journal of Colloid and Interface Science, 1995, 170, 182-192.	9.4	85
71	The Influence of Net Charge and Charge Location on the Adsorption and Dodecyltrimethylammonium Bromide-Mediated Elutability of Bacteriophage T4 Lysozyme at Silica Surfaces. Journal of Colloid and Interface Science, 1995, 170, 193-202.	9.4	33
72	Structural Changes of T4 Lysozyme upon Adsorption to Silica Nanoparticles Measured by Circular Dichroism. Journal of Colloid and Interface Science, 1995, 175, 77-82.	9.4	149

#	Article	IF	CITATIONS
73	The Adsorption of Lysozyme to Hydrophilic Silicon Oxide Surfaces: Comparison between Experimental Data and Models for Adsorption Kinetics. Journal of Colloid and Interface Science, 1995, 175, 506-514.	9.4	118
74	Competition between fibrinogen and a non-ionic surfactant in adsorption to a wettability gradient surface. Colloids and Surfaces B: Biointerfaces, 1995, 4, 23-31.	5.0	27
75	Proteinâ€"Surfactant Interactions at Solid Surfaces. ACS Symposium Series, 1995, , 239-254.	0.5	20
76	Comparative Adsorption Studies with Synthetic, Structural Stability and Charge Mutants of Bacteriophage T4 Lysozyme. ACS Symposium Series, 1995, , 52-65.	0.5	8
77	The Adsorption from Solutions of \hat{I}^2 -Lactoglobulin Mixed with Lactoferrin or Lysozyme onto Silica and Methylated Silica Surfaces. Journal of Colloid and Interface Science, 1993, 158, 46-53.	9.4	44
78	Adsorption of globular model proteins to silica and methylated silica surfaces and their elutability by dodecyltrimethylammonium bromide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 70, 139-149.	4.7	43
79	The elutability of fibrinogen by sodium dodecyl sulphate and alkyltrimethylammonium bromides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 70, 151-158.	4.7	29
80	The concentration dependence of adsorption from a mixture of \hat{l}^2 -lactoglobulin and sodium dodecyl sulfate onto methylated silica surfaces. Journal of Colloid and Interface Science, 1992, 148, 201-206.	9.4	32
81	Contact angles of ultrafiltration membranes and their possible correlation to membrane performance. Journal of Membrane Science, 1992, 72, 293-302.	8.2	96
82	Interaction of cetyltrimethylammonium bromide and sodium dodecyl sulfate with \hat{l}^2 -lactoglobulin and lysozyme at solid surfaces. Journal of Colloid and Interface Science, 1991, 142, 503-511.	9.4	84
83	Adsorption of Î ² -Lactoglobulin onto silica, methylated silica, and polysulfone. Journal of Colloid and Interface Science, 1990, 136, 259-265.	9.4	96