Liang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/321184/publications.pdf

Version: 2024-02-01

687363 526287 29 776 13 27 citations h-index g-index papers 32 32 32 588 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Advances in microbial engineering for the production of value-added products in a biorefinery. Systems Microbiology and Biomanufacturing, 2023, 3, 246-261.	2.9	3
2	Engineering membrane asymmetry to increase mediumâ€chain fatty acid tolerance in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2022, 119, 277-286.	3.3	2
3	Improving succinate production by engineering oxygen-dependent dynamic pathway regulation in Escherichia coli. Systems Microbiology and Biomanufacturing, 2022, 2, 331-344.	2.9	4
4	Synergistic Metabolism of Glucose and Formate Increases the Yield of Short-Chain Organic Acids in <i>Escherichia coli</i> . ACS Synthetic Biology, 2022, 11, 135-143.	3.8	16
5	Bifunctional optogenetic switch for improving shikimic acid production in E. coli., 2022, 15, 13.		10
6	Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae. Nature Communications, 2022, 13, 1886.	12.8	20
7	Enhancing tryptophan production by balancing precursors in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2022, 119, 983-993.	3.3	17
8	Rational Design of Phospholipase D to Improve the Transphosphatidylation Activity for Phosphatidylserine Synthesis. Journal of Agricultural and Food Chemistry, 2022, 70, 6709-6718.	5.2	5
9	Advances in microbial production of feed amino acid. Advances in Applied Microbiology, 2022, , 1-33.	2.4	3
10	Advances in microbial synthesis of bioplastic monomers. Advances in Applied Microbiology, 2022, , .	2.4	0
11	Dynamic control of the distribution of carbon flux between cell growth and butyrate biosynthesis in Escherichia coli. Applied Microbiology and Biotechnology, 2021, 105, 5173-5187.	3.6	2
12	Dynamic regulation of membrane integrity to enhance <scp> </scp> â€malate stress tolerance in <i>Candida glabrata</i> . Biotechnology and Bioengineering, 2021, 118, 4347-4359.	3.3	10
13	Rational design of a highly efficient catalytic system for the production of PAPS from ATP and its application in the synthesis of chondroitin sulfate. Biotechnology and Bioengineering, 2021, 118, 4503-4515.	3.3	10
14	Engineering a CRISPRi Circuit for Autonomous Control of Metabolic Flux in <i>Escherichia coli</i> ACS Synthetic Biology, 2021, 10, 2661-2671.	3.8	9
15	Immobilization of Microbial Consortium for Glutaric Acid Production from Lysine. ChemCatChem, 2021, 13, 5047-5055.	3.7	6
16	Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production. Bioresources and Bioprocessing, 2021, 8, .	4.2	6
17	Enzymatic Production of Ascorbic Acid-2-Phosphate by Engineered Pseudomonas aeruginosa Acid Phosphatase. Journal of Agricultural and Food Chemistry, 2021, 69, 14215-14221.	5.2	5
18	Reprogramming microbial populations using a programmed lysis system to improve chemical production. Nature Communications, 2021, 12, 6886.	12.8	13

#	Article	IF	CITATION
19	Light-powered Escherichia coli cell division for chemical production. Nature Communications, 2020, 11, 2262.	12.8	51
20	Rewiring carbon flux in Escherichia coli using a bifunctional molecular switch. Metabolic Engineering, 2020, 61, 47-57.	7.0	34
21	Engineering microbial cell morphology and membrane homeostasis toward industrial applications. Current Opinion in Biotechnology, 2020, 66, 18-26.	6.6	26
22	Improving lysine production through construction of an <i>Escherichia coli</i> enzymeâ€constrained model. Biotechnology and Bioengineering, 2020, 117, 3533-3544.	3.3	47
23	Engineering Escherichia coli lifespan for enhancing chemical production. Nature Catalysis, 2020, 3, 307-318.	34.4	61
24	Dynamic consolidated bioprocessing for direct production of xylonate and shikimate from xylan by Escherichia coli. Metabolic Engineering, 2020, 60, 128-137.	7.0	20
25	Programmable biomolecular switches for rewiring flux in Escherichia coli. Nature Communications, 2019, 10, 3751.	12.8	84
26	Enhancement of malate production through engineering of the periplasmic rTCA pathway in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2018, 115, 1571-1580.	3.3	37
27	DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chemical Reviews, 2018, 118, 4-72.	47.7	141
28	Engineering <i>Escherichia coli</i> for malate production by integrating modular pathway characterization with CRISPRiâ€guided multiplexed metabolic tuning. Biotechnology and Bioengineering, 2018, 115, 661-672.	3.3	77
29	Engineering synergetic CO2-fixing pathways for malate production. Metabolic Engineering, 2018, 47, 496-504.	7.0	55