Jeff Kissel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3210755/publications.pdf

Version: 2024-02-01

430874 713466 2,656 21 18 21 h-index citations g-index papers 21 21 21 3537 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
2	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Physical Review Letters, 2019, 123, 231107.	7.8	359
3	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Physical Review D, 2016, 93, .	4.7	286
4	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Physical Review D, 2020, 102, .	4.7	196
5	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	4.0	128
6	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	2.9	123
7	Update on quadruple suspension design for Advanced LIGO. Classical and Quantum Gravity, 2012, 29, 235004.	4.0	123
8	Characterization of systematic error in Advanced LIGO calibration. Classical and Quantum Gravity, 2020, 37, 225008.	4.0	98
9	Blip glitches in Advanced LIGO data. Classical and Quantum Gravity, 2019, 36, 155010.	4.0	84
10	Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. Physical Review D, 2019, 99, .	4.7	77
11	Machine-learning nonstationary noise out of gravitational-wave detectors. Physical Review D, 2020, 101, .	4.7	70
12	The Advanced LIGO photon calibrators. Review of Scientific Instruments, 2016, 87, 114503.	1.3	65
13	Approaching the motional ground state of a 10-kg object. Science, 2021, 372, 1333-1336.	12.6	59
14	Reconstructing the calibrated strain signal in the Advanced LIGO detectors. Classical and Quantum Gravity, 2018, 35, 095015.	4.0	57
15	Gravitational-wave astronomy with a physical calibration model. Physical Review D, 2020, 102, .	4.7	28
16	Physical approach to the marginalization of LIGO calibration uncertainties. Physical Review D, 2021, 103, .	4.7	27
17	Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations. Classical and Quantum Gravity, 2017, 34, 015002.	4.0	25
18	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20

#	Article	IF	CITATIONS
19	Towards windproofing LIGO: reducing the effect of wind-driven floor tilt by using rotation sensors in active seismic isolation. Classical and Quantum Gravity, 2020, 37, 185018.	4.0	11
20	Initial results from the LIGO Newtonian calibrator. Physical Review D, 2021, 104, .	4.7	10
21	Advanced LIGO squeezer platform for backscattered light and optical loss reduction. Classical and Quantum Gravity, 2020, 37, 215015.	4.0	2