Yingzi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3210649/publications.pdf

Version: 2024-02-01

26	1,277	20	26
papers	citations	h-index	g-index
27	27	27	1343
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Copper and Rhodium Relay Catalysis for Selective Access to cis-2,3-Dihydroazepines. Organic Letters, 2021, 23, 6450-6454.	4.6	14
2	Pd-Catalyzed Decarboxylative Olefination: Stereoselective Synthesis of Polysubstituted Butadienes and Macrocyclic P-glycoprotein Inhibitors. Journal of the American Chemical Society, 2020, 142, 9982-9992.	13.7	37
3	Origin of Regiochemical Control in Rh(III)/Rh(V)-Catalyzed Reactions of Unsaturated Oximes and Alkenes to Form Pyrdines. ACS Catalysis, 2019, 9, 7154-7165.	11.2	40
4	Unprecedented Dearomatized Spirocyclopropane in a Sequential Rhodium(III)â€Catalyzed Câ°'H Activation and Rearrangement Reaction. Angewandte Chemie - International Edition, 2018, 57, 5520-5524.	13.8	42
5	Beispielloses dearomatisiertes Spirocyclopropan in einer sequenziellen Rhodium(III)â€katalysierten Câ€Hâ€Aktivierung und Umlagerungsreaktion. Angewandte Chemie, 2018, 130, 5618-5622.	2.0	11
6	Relationships between Product Ratios in Ambimodal Pericyclic Reactions and Bond Lengths in Transition Structures. Journal of the American Chemical Society, 2018, 140, 3061-3067.	13.7	63
7	Insights into disilylation and distannation: sequence influence and ligand/steric effects on Pd-catalyzed difunctionalization of carbenes. Dalton Transactions, 2018, 47, 1819-1826.	3.3	21
8	Ni(<scp>i</scp>)–Ni(<scp>iii</scp>) <i>vs</i> . Ni(<scp>ii</scp>)–Ni(<scp>iv</scp>): mechanistic study of Ni-catalyzed alkylation of benzamides with alkyl halides. Organic Chemistry Frontiers, 2018, 5, 615-622.	4.5	48
9	Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. Nature Chemistry, 2018, 10, 1048-1055.	13.6	131
10	Mechanism, Regio-, and Diastereoselectivity of Rh(III)-Catalyzed Cyclization Reactions of <i>N</i> -Arylnitrones with Alkynes: A Density Functional Theory Study. Journal of Physical Chemistry A, 2017, 121, 4496-4504.	2.5	17
11	Ir(III)/Ir(V) or Ir(I)/Ir(III) Catalytic Cycle? Steric-Effect-Controlled Mechanism for the ⟨i⟩para⟨/i⟩-C–H Borylation of Arenes. Organometallics, 2017, 36, 2107-2115.	2.3	38
12	Bond dissociation energy controlled $\ddot{l}f$ -bond metathesis in alkaline-earth-metal hydride catalyzed dehydrocoupling of amines and boranes: a theoretical study. Inorganic Chemistry Frontiers, 2017, 4, 1813-1820.	6.0	18
13	From Mechanistic Study to Chiral Catalyst Optimization: Theoretical Insight into Binaphthophosphepine-catalyzed Asymmetric Intramolecular [3 + 2] Cycloaddition. Scientific Reports, 2017, 7, 7619.	3.3	11
14	Mechanism of Rhodium-Catalyzed C–H Functionalization: Advances in Theoretical Investigation. Accounts of Chemical Research, 2017, 50, 2799-2808.	15.6	203
15	Anthranil: An Aminating Reagent Leading to Bifunctionality for Both C(sp ³)â 'H and C(sp ²)â 'H under Rhodium(III) Catalysis. Angewandte Chemie, 2016, 128, 8838-8842.	2.0	41
16	Mechanism of Ruthenium-Catalyzed Direct Arylation of C–H Bonds in Aromatic Amides: A Computational Study. Organometallics, 2016, 35, 1440-1445.	2.3	39
17	Mild Acylation of C(sp ³)â€"H and C(sp ²)â€"H Bonds under Redox-Neutral Rh(III) Catalysis. ACS Catalysis, 2016, 6, 7744-7748.	11.2	57
18	Reactivity of Singleâ€Walled Carbon Nanotubes in the Diels–Alder Cycloaddition Reaction: Distortion–Interaction Analysis along the Reaction Pathway. Chemistry - A European Journal, 2016, 22, 12819-12824.	3.3	21

#	ARTICLE	IF	CITATION
19	Anthranil: An Aminating Reagent Leading to Bifunctionality for Both C(sp ³)â^'H and C(sp ²)â^'H under Rhodium(III) Catalysis. Angewandte Chemie - International Edition, 2016, 55, 8696-8700.	13.8	193
20	Rhodium(III)-Catalyzed Annulation between <i>N</i> -Sulfinyl Ketoimines and Activated Olefins: C–H Activation Assisted by an Oxidizing N–S Bond. ACS Catalysis, 2016, 6, 1971-1980.	11.2	73
21	Mechanism, chemoselectivity and enantioselectivity for the rhodium-catalyzed desymmetric synthesis of hydrobenzofurans: a theoretical study. Organic Chemistry Frontiers, 2016, 3, 209-216.	4.5	21
22	The Mechanism of NO Bond Cleavage in Rhodiumâ€Catalyzed CH Bond Functionalization of Quinoline <i>N</i> à€oxides with Alkynes: A Computational Study. Chemistry - A European Journal, 2015, 21, 10131-10137.	3. 3	59
23	Mechanism and selectivity for zinc-mediated cycloaddition of azides with alkynes: a computational study. RSC Advances, 2015, 5, 49802-49808.	3.6	23
24	Dinuclear versus mononuclear pathways in zinc mediated nucleophilic addition: a combined experimental and DFT study. Dalton Transactions, 2015, 44, 11165-11171.	3.3	26
25	Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine. Science Advances, 2015, 1, e1500656.	10.3	24
26	Hexahapto-chromium complexes of graphene: a theoretical study. RSC Advances, 2014, 4, 28640-28644.	3.6	6