Samuel H Wilson

List of Publications by Citations

Source: https://exaly.com/author-pdf/3210556/samuel-h-wilson-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

441 papers

25,256 citations

86 h-index

137 g-index

475 ext. papers

26,718 ext. citations

8.7 avg, IF

6.75 L-index

#	Paper	IF	Citations
441	Requirement of mammalian DNA polymerase-beta in base-excision repair. <i>Nature</i> , 1996 , 379, 183-6	50.4	751
440	Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. <i>Science</i> , 1994 , 264, 1891-1903	33.3	737
439	Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. <i>Biochemistry</i> , 1997 , 36, 11205-15	3.2	582
438	Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. <i>Science</i> , 1994 , 264, 1930-5	33.3	467
437	AP endonuclease-independent DNA base excision repair in human cells. <i>Molecular Cell</i> , 2004 , 15, 209-20	17.6	374
436	OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. <i>Nature</i> , 2007 , 447, 447-52	50.4	349
435	Markers for Gene Expression in Cultured Cells from the Nervous System. <i>Journal of Biological Chemistry</i> , 1972 , 247, 3159-3169	5.4	313
434	HTLV-I trans-activator protein, tax, is a trans-repressor of the human beta-polymerase gene. <i>Science</i> , 1990 , 247, 1082-4	33.3	304
433	Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. <i>Journal of Biological Chemistry</i> , 1998 , 273, 21203-9	5.4	291
432	The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity. <i>Nature</i> , 2000 , 405, 807-10	50.4	288
431	DNA polymerase beta conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract. <i>Journal of Biological Chemistry</i> , 1995 , 270, 949-57	5.4	263
430	Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity. <i>Biochemistry</i> , 1996 , 35, 12742-61	3.2	256
429	In situ analysis of repair processes for oxidative DNA damage in mammalian cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 13738-43	11.5	252
428	Structure and mechanism of DNA polymerase Beta. <i>Chemical Reviews</i> , 2006 , 106, 361-82	68.1	248
427	A role for p53 in base excision repair. <i>EMBO Journal</i> , 2001 , 20, 914-23	13	241
426	Mammalian base excision repair and DNA polymerase beta. <i>Mutation Research DNA Repair</i> , 1998 , 407, 203-15		226
425	Magnesium-induced assembly of a complete DNA polymerase catalytic complex. <i>Structure</i> , 2006 , 14, 757-66	5.2	224

424	Specific interaction of DNA polymerase beta and DNA ligase I in a multiprotein base excision repair complex from bovine testis. <i>Journal of Biological Chemistry</i> , 1996 , 271, 16000-7	5.4	212
423	The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase beta. <i>Nucleic Acids Research</i> , 2006 , 34, 745-54	20.1	205
422	Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. <i>Biochemistry</i> , 1998 , 37, 3575-80	3.2	195
421	Stepwise mechanism of HIV reverse transcriptase: primer function of phosphorothioate oligodeoxynucleotide. <i>Biochemistry</i> , 1989 , 28, 1340-6	3.2	192
420	Regulation of acetylcholinesterase in neuroblastoma cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1970 , 67, 786-92	11.5	192
419	Biomedical research leaders: report on needs, opportunities, difficulties, education and training, and evaluation. <i>Environmental Health Perspectives</i> , 2000 , 108 Suppl 6, 979-95	8.4	189
418	Identification of 5'-deoxyribose phosphate lyase activity in human DNA polymerase gamma and its role in mitochondrial base excision repair in vitro. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 12244-8	11.5	185
417	Role of DNA polymerase beta in the excision step of long patch mammalian base excision repair. Journal of Biological Chemistry, 1999 , 274, 13741-3	5.4	177
416	5'-Deoxyribose phosphate lyase activity of human DNA polymerase iota in vitro. <i>Science</i> , 2001 , 291, 21	56 3 9.3	172
415	Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA. <i>Journal of Biological Chemistry</i> , 1998 , 273, 898-902	5.4	170
414	XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks. <i>Cell Research</i> , 2008 , 18, 48-63	24.7	168
413	FEN1 stimulation of DNA polymerase beta mediates an excision step in mammalian long patch base excision repair. <i>Journal of Biological Chemistry</i> , 2000 , 275, 4460-6	5.4	164
412	Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. <i>Journal of Biological Chemistry</i> , 1998 , 273, 15263-70	5.4	162
411	Mammalian base excision repair by DNA polymerases delta and epsilon. <i>Oncogene</i> , 1998 , 17, 835-43	9.2	160
410	A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta. <i>Biochemistry</i> , 1996 , 35, 12762-77	3.2	158
409	Physiology of rat-liver polysomes. The stability of messenger ribonucleic acid and ribosomes. <i>Biochemical Journal</i> , 1967 , 103, 556-66		157
408	Observing a DNA polymerase choose right from wrong. <i>Cell</i> , 2013 , 154, 157-68	56.2	151
4 ⁰ 7	Abasic translesion synthesis by DNA polymerase beta violates the "A-rule". Novel types of nucleotide incorporation by human DNA polymerase beta at an abasic lesion in different sequence contexts. <i>Journal of Biological Chemistry</i> , 1997 , 272, 2559-69	5.4	150

406	DNA polymerase beta -mediated long patch base excision repair. Poly(ADP-ribose)polymerase-1 stimulates strand displacement DNA synthesis. <i>Journal of Biological Chemistry</i> , 2001 , 276, 32411-4	5.4	148
405	Induction of beta-polymerase mRNA by DNA-damaging agents in Chinese hamster ovary cells. <i>Molecular and Cellular Biology</i> , 1989 , 9, 851-3	4.8	148
404	Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate. Evidence for the role of poly(ADP-ribose) polymerase-1 in DNA repair. <i>Journal of Biological Chemistry</i> , 2001 , 276, 25541-8	5.4	147
403	Enzyme-DNA interactions required for efficient nucleotide incorporation and discrimination in human DNA polymerase beta. <i>Journal of Biological Chemistry</i> , 1996 , 271, 12141-4	5.4	146
402	The X family portrait: structural insights into biological functions of X family polymerases. <i>DNA Repair</i> , 2007 , 6, 1709-25	4.3	145
401	Evidence for an imino intermediate in the DNA polymerase beta deoxyribose phosphate excision reaction. <i>Journal of Biological Chemistry</i> , 1996 , 271, 17811-5	5.4	143
400	Base excision repair intermediates induce p53-independent cytotoxic and genotoxic responses. Journal of Biological Chemistry, 2003 , 278, 39951-9	5.4	140
399	Purification and domain-mapping of mammalian DNA polymerase beta. <i>Methods in Enzymology</i> , 1995 , 262, 98-107	1.7	139
398	Substrate binding by human apurinic/apyrimidinic endonuclease indicates a Briggs-Haldane mechanism. <i>Journal of Biological Chemistry</i> , 1997 , 272, 1302-7	5.4	136
397	DNA structure and aspartate 276 influence nucleotide binding to human DNA polymerase beta. Implication for the identity of the rate-limiting conformational change. <i>Journal of Biological Chemistry</i> , 2001 , 276, 3408-16	5.4	134
396	DNA polymerase lambda mediates a back-up base excision repair activity in extracts of mouse embryonic fibroblasts. <i>Journal of Biological Chemistry</i> , 2005 , 280, 18469-75	5.4	130
395	Expression of human DNA polymerase beta in Escherichia coli and characterization of the recombinant enzyme. <i>Biochemistry</i> , 1988 , 27, 901-9	3.2	126
394	Structural insights into the origins of DNA polymerase fidelity. <i>Structure</i> , 2003 , 11, 489-96	5.2	125
393	Structural design of a eukaryotic DNA repair polymerase: DNA polymerase beta. <i>Mutation Research DNA Repair</i> , 2000 , 460, 231-44		124
392	Structure of DNA polymerase beta with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential. <i>Structure</i> , 2003 , 11, 121-7	5.2	123
391	HMGB1 is a cofactor in mammalian base excision repair. <i>Molecular Cell</i> , 2007 , 27, 829-41	17.6	121
390	Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase beta as revealed by site-directed mutagenesis. DNA binding and 5'-deoxyribose phosphate lyase activities. <i>Journal of Biological Chemistry</i> , 1998 , 273, 11121-6	5.4	120
389	Studies of the strand-annealing activity of mammalian hnRNP complex protein A1. <i>Biochemistry</i> , 1990 , 29, 10717-22	3.2	120

(2015-2010)

388	Apurinic/apyrimidinic (AP) site recognition by the 5'-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 22090-5	11.5	118
387	Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 7465-70	11.5	117
386	Identification of N(G)-methylarginine residues in human heterogeneous RNP protein A1: Phe/Gly-Gly-Gly-Gly-Gly-Gly-Gly/Phe is a preferred recognition motif. <i>Biochemistry</i> , 1997 , 36, 5185-92	3.2	116
385	Protection against methylation-induced cytotoxicity by DNA polymerase beta-dependent long patch base excision repair. <i>Journal of Biological Chemistry</i> , 2000 , 275, 2211-8	5.4	116
384	DNA polymerase beta and flap endonuclease 1 enzymatic specificities sustain DNA synthesis for long patch base excision repair. <i>Journal of Biological Chemistry</i> , 2005 , 280, 3665-74	5.4	115
383	Critical role of magnesium ions in DNA polymerase beta's closing and active site assembly. <i>Journal of the American Chemical Society</i> , 2004 , 126, 8441-53	16.4	114
382	The fidelity of DNA polymerase beta during distributive and processive DNA synthesis. <i>Journal of Biological Chemistry</i> , 1999 , 274, 3642-50	5.4	114
381	Reduced frameshift fidelity and processivity of HIV-1 reverse transcriptase mutants containing alanine substitutions in helix H of the thumb subdomain. <i>Journal of Biological Chemistry</i> , 1995 , 270, 195	1 5 23	111
380	Structures of DNA polymerase beta with active-site mismatches suggest a transient abasic site intermediate during misincorporation. <i>Molecular Cell</i> , 2008 , 30, 315-24	17.6	110
379	DNA polymerase beta expression differences in selected human tumors and cell lines. <i>Carcinogenesis</i> , 1999 , 20, 1049-54	4.6	109
378	Stimulation of NEIL2-mediated oxidized base excision repair via YB-1 interaction during oxidative stress. <i>Journal of Biological Chemistry</i> , 2007 , 282, 28474-28484	5.4	107
377	Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase beta. <i>Journal of Biological Chemistry</i> , 2007 , 282, 13532-41	5.4	107
376	Direct interaction between mammalian DNA polymerase beta and proliferating cell nuclear antigen. <i>Journal of Biological Chemistry</i> , 2002 , 277, 31115-23	5.4	106
375	A minor groove binding track in reverse transcriptase. <i>Nature Structural Biology</i> , 1997 , 4, 194-7		105
374	Vertebrate POLQ and POLbeta cooperate in base excision repair of oxidative DNA damage. <i>Molecular Cell</i> , 2006 , 24, 115-25	17.6	105
373	Substrate channeling in mammalian base excision repair pathways: passing the baton. <i>Journal of Biological Chemistry</i> , 2010 , 285, 40479-88	5.4	103
372	NEIL2-initiated, APE-independent repair of oxidized bases in DNA: Evidence for a repair complex in human cells. <i>DNA Repair</i> , 2006 , 5, 1439-48	4.3	103
371	Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. <i>Nature</i> , 2015 , 517, 635-9	50.4	102

370	8-oxodGTP incorporation by DNA polymerase beta is modified by active-site residue Asn279. <i>Biochemistry</i> , 2000 , 39, 1029-33	3.2	99
369	The Werner syndrome protein stimulates DNA polymerase beta strand displacement synthesis via its helicase activity. <i>Journal of Biological Chemistry</i> , 2003 , 278, 22686-95	5.4	96
368	Efficiency of correct nucleotide insertion governs DNA polymerase fidelity. <i>Journal of Biological Chemistry</i> , 2002 , 277, 47393-8	5.4	95
367	Steady-state kinetics of mouse DNA polymerase beta. <i>Biochemistry</i> , 1979 , 18, 3401-6	3.2	95
366	Modifying the beta,gamma leaving-group bridging oxygen alters nucleotide incorporation efficiency, fidelity, and the catalytic mechanism of DNA polymerase beta. <i>Biochemistry</i> , 2007 , 46, 461-71	1 ^{3.2}	94
365	Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. <i>Nucleic Acids Research</i> , 2005 , 33, 1222-9	20.1	94
364	DNA polymerase lambda protects mouse fibroblasts against oxidative DNA damage and is recruited to sites of DNA damage/repair. <i>Journal of Biological Chemistry</i> , 2005 , 280, 31641-7	5.4	94
363	Structure and mechanism of DNA polymerase []Biochemistry, 2014 , 53, 2768-80	3.2	93
362	Personalized exposure assessment: promising approaches for human environmental health research. <i>Environmental Health Perspectives</i> , 2005 , 113, 840-8	8.4	92
361	Identification and properties of the catalytic domain of mammalian DNA polymerase beta. <i>Biochemistry</i> , 1990 , 29, 7156-9	3.2	92
360	Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. <i>Journal of Clinical Investigation</i> , 2004 , 113, 1711-1721	15.9	91
359	Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion. <i>Journal of Biological Chemistry</i> , 2009 , 284, 28352-28366	5.4	90
358	HMGB1: roles in base excision repair and related function. <i>Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms</i> , 2010 , 1799, 119-30	6	88
357	Capturing snapshots of APE1 processing DNA damage. <i>Nature Structural and Molecular Biology</i> , 2015 , 22, 924-31	17.6	86
356	Sequence of human DNA polymerase beta mRNA obtained through cDNA cloning. <i>Biochemical and Biophysical Research Communications</i> , 1986 , 136, 341-7	3.4	86
355	DNA base excision repair: a mechanism of trinucleotide repeat expansion. <i>Trends in Biochemical Sciences</i> , 2012 , 37, 162-72	10.3	85
354	Energy analysis of chemistry for correct insertion by DNA polymerase beta. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 13294-9	11.5	85
353	Interactions of the A1 heterogeneous nuclear ribonucleoprotein and its proteolytic derivative, UP1, with RNA and DNA: evidence for multiple RNA binding domains and salt-dependent binding mode transitions. <i>Biochemistry.</i> 1991 , 30, 2968-76	3.2	85

(2004-1975)

352	On the DNA polymerase III of mouse myeloma: partial purification and characterization. <i>Biochemistry</i> , 1975 , 14, 1006-20	3.2	84
351	Polymerase beta simulations suggest that Arg258 rotation is a slow step rather than large subdomain motions per se. <i>Journal of Molecular Biology</i> , 2002 , 317, 651-71	6.5	82
350	Structural insights into DNA polymerase beta fidelity: hold tight if you want it right. <i>Chemistry and Biology</i> , 1998 , 5, R7-13		81
349	Ochratoxin A-induced mutagenesis in mammalian cells is consistent with the production of oxidative stress. <i>Chemical Research in Toxicology</i> , 2007 , 20, 1031-7	4	81
348	Environmental health and genomics: visions and implications. <i>Nature Reviews Genetics</i> , 2000 , 1, 149-53	30.1	81
347	Domain specific interaction in the XRCC1-DNA polymerase beta complex. <i>Nucleic Acids Research</i> , 2000 , 28, 2049-59	20.1	81
346	Enzymes for modifying and labeling DNA and RNA. <i>Methods in Enzymology</i> , 1987 , 152, 94-110	1.7	80
345	Characterization of DNA polymerase beta mRNA: cell-cycle and growth response in cultured human cells. <i>Nucleic Acids Research</i> , 1988 , 16, 9587-96	20.1	79
344	Hypersensitivity of DNA polymerase beta null mouse fibroblasts reflects accumulation of cytotoxic repair intermediates from site-specific alkyl DNA lesions. <i>DNA Repair</i> , 2003 , 2, 27-48	4.3	78
343	Mechanism of HIV reverse transcriptase: enzyme-primer interaction as revealed through studies of a dNTP analogue, 3'-azido-dTTP. <i>Biochemistry</i> , 1990 , 29, 3603-11	3.2	78
342	Structure of rat DNA polymerase beta revealed by partial amino acid sequencing and cDNA cloning. Proceedings of the National Academy of Sciences of the United States of America, 1986 , 83, 5106-10	11.5	78
341	Human DNA polymerase theta possesses 5'-dRP lyase activity and functions in single-nucleotide base excision repair in vitro. <i>Nucleic Acids Research</i> , 2009 , 37, 1868-77	20.1	76
340	Up-regulation of base excision repair correlates with enhanced protection against a DNA damaging agent in mouse cell lines. <i>Nucleic Acids Research</i> , 1998 , 26, 2001-7	20.1	76
339	Strategic down-regulation of DNA polymerase beta by antisense RNA sensitizes mammalian cells to specific DNA damaging agents. <i>Nucleic Acids Research</i> , 1995 , 23, 3810-5	20.1	76
338	Magnesium-cationic dummy atom molecules enhance representation of DNA polymerase beta in molecular dynamics simulations: improved accuracy in studies of structural features and mutational effects. <i>Journal of Molecular Biology</i> , 2007 , 366, 687-701	6.5	75
337	Protein-protein interactions of HIV-1 reverse transcriptase: implication of central and C-terminal regions in subunit binding. <i>Biochemistry</i> , 1991 , 30, 11707-19	3.2	75
336	Base excision repair deficiency caused by polymerase beta haploinsufficiency: accelerated DNA damage and increased mutational response to carcinogens. <i>Cancer Research</i> , 2003 , 63, 5799-807	10.1	75
335	Identification of small molecule synthetic inhibitors of DNA polymerase beta by NMR chemical shift mapping. <i>Journal of Biological Chemistry</i> , 2004 , 279, 39736-44	5.4	74

334	DNA polymerase beta fidelity: halomethylene-modified leaving groups in pre-steady-state kinetic analysis reveal differences at the chemical transition state. <i>Biochemistry</i> , 2008 , 47, 870-9	3.2	73
333	Structural insights into DNA polymerase beta deterrents for misincorporation support an induced-fit mechanism for fidelity. <i>Structure</i> , 2004 , 12, 1823-32	5.2	73
332	AP endonuclease and poly(ADP-ribose) polymerase-1 interact with the same base excision repair intermediate. <i>DNA Repair</i> , 2004 , 3, 581-91	4.3	73
331	Yeast open reading frame YCR14C encodes a DNA beta-polymerase-like enzyme. <i>Nucleic Acids Research</i> , 1993 , 21, 5301-7	20.1	72
330	Mutations associated with base excision repair deficiency and methylation-induced genotoxic stress. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 6860-5	11.5	71
329	A novel DNA polymerase activity found in association with intracisternal A-type particles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1972 , 69, 1531-6	11.5	71
328	DNA polymerase structure-based insight on the mutagenic properties of 8-oxoguanine. <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 2010 , 703, 18-23	3	70
327	Binary complex crystal structure of DNA polymerase Feveals multiple conformations of the templating 8-oxoguanine lesion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 113-8	11.5	70
326	Involvement of DNA polymerase beta in protection against the cytotoxicity of oxidative DNA damage. <i>DNA Repair</i> , 2002 , 1, 317-33	4.3	69
325	Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase. <i>Journal of Neuroscience</i> , 2008 , 28, 7219-30	6.6	68
324	Backbone dynamics and refined solution structure of the N-terminal domain of DNA polymerase beta. Correlation with DNA binding and dRP lyase activity. <i>Journal of Molecular Biology</i> , 2000 , 296, 229-200.	53 .5	67
323	Influence of DNA structure on DNA polymerase beta active site function: extension of mutagenic DNA intermediates. <i>Journal of Biological Chemistry</i> , 2004 , 279, 31921-9	5.4	66
322	Mammalian DNA beta-polymerase in base excision repair of alkylation damage. <i>Progress in Molecular Biology and Translational Science</i> , 2001 , 68, 57-74		66
321	Studies on DNA alpha-polymerase of mouse myeloma: partial purification and comparison of three molecular forms of the enzyme. <i>Biochemistry</i> , 1976 , 15, 5305-14	3.2	66
320	Suicidal cross-linking of PARP-1 to AP site intermediates in cells undergoing base excision repair. <i>Nucleic Acids Research</i> , 2014 , 42, 6337-51	20.1	65
319	Regulation of DNA repair fidelity by molecular checkpoints: "gates" in DNA polymerase beta's substrate selection. <i>Biochemistry</i> , 2006 , 45, 15142-56	3.2	65
318	Eukaryotic Base Excision Repair: New Approaches Shine Light on Mechanism. <i>Annual Review of Biochemistry</i> , 2019 , 88, 137-162	29.1	64
317	Mapping of the 5'-2-deoxyribose-5-phosphate lyase active site in DNA polymerase beta by mass spectrometry. <i>Journal of Biological Chemistry</i> , 2000 , 275, 10463-71	5.4	63

(2005-1983)

316	Improved conditions for activity gel analysis of DNA polymerase catalytic polypeptides. <i>Analytical Biochemistry</i> , 1983 , 135, 318-25	3.1	63	
315	Loss of DNA polymerase beta stacking interactions with templating purines, but not pyrimidines, alters catalytic efficiency and fidelity. <i>Journal of Biological Chemistry</i> , 2002 , 277, 8235-42	5.4	62	
314	Physiology of rat-liver polysomes. Protein synthesis by stable polysomes. <i>Biochemical Journal</i> , 1967 , 103, 567-72		61	
313	Haploinsufficiency in DNA polymerase beta increases cancer risk with age and alters mortality rate. <i>Cancer Research</i> , 2006 , 66, 7460-5	10.1	60	
312	DNA polymerases beta and lambda mediate overlapping and independent roles in base excision repair in mouse embryonic fibroblasts. <i>PLoS ONE</i> , 2010 , 5, e12229	3.7	60	
311	Localization of the deoxyribose phosphate lyase active site in human DNA polymerase iota by controlled proteolysis. <i>Journal of Biological Chemistry</i> , 2003 , 278, 29649-54	5.4	59	
310	Mammalian heterogeneous ribonucleoprotein A1 and its constituent domains. Nucleic acid interaction, structural stability and self-association. <i>Journal of Molecular Biology</i> , 1993 , 229, 873-89	6.5	59	
309	Thermodynamics of human DNA ligase I trimerization and association with DNA polymerase beta. Journal of Biological Chemistry, 1998 , 273, 20540-50	5.4	58	
308	Structural insight into the DNA polymerase beta deoxyribose phosphate lyase mechanism. <i>DNA Repair</i> , 2005 , 4, 1347-57	4.3	57	
307	"Action-at-a-distance" mutagenesis. 8-oxo-7, 8-dihydro-2'-deoxyguanosine causes base substitution errors at neighboring template sites when copied by DNA polymerase beta. <i>Journal of Biological Chemistry</i> , 1999 , 274, 15920-6	5.4	56	
306	Base excision repair defects invoke hypersensitivity to PARP inhibition. <i>Molecular Cancer Research</i> , 2014 , 12, 1128-39	6.6	55	
305	DNA polymerase beta substrate specificity: side chain modulation of the "A-rule". <i>Journal of Biological Chemistry</i> , 2009 , 284, 31680-9	5.4	55	
304	DNA polymerase beta ribonucleotide discrimination: insertion, misinsertion, extension, and coding. <i>Journal of Biological Chemistry</i> , 2010 , 285, 24457-65	5.4	54	
303	Poly(ADP-ribose) polymerase activity prevents signaling pathways for cell cycle arrest after DNA methylating agent exposure. <i>Journal of Biological Chemistry</i> , 2005 , 280, 15773-85	5.4	54	
302	DNA polymerase beta and DNA synthesis in Xenopus oocytes and in a nuclear extract. <i>Science</i> , 1992 , 258, 475-8	33.3	54	
301	Intrinsic mutagenic properties of 5-chlorocytosine: A mechanistic connection between chronic inflammation and cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E4571-80	11.5	53	
300	PARP1 changes from three-dimensional DNA damage searching to one-dimensional diffusion after auto-PARylation or in the presence of APE1. <i>Nucleic Acids Research</i> , 2017 , 45, 12834-12847	20.1	53	
299	Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity. <i>Biochemistry</i> , 2005 , 44, 13328-41	3.2	53	

298	Minor groove interactions at the DNA polymerase beta active site modulate single-base deletion error rates. <i>Journal of Biological Chemistry</i> , 2000 , 275, 28033-8	5.4	53
297	DNA synthesis and dRPase activities of polymerase beta are both essential for single-nucleotide patch base excision repair in mammalian cell extracts. <i>Biochemistry</i> , 2001 , 40, 809-13	3.2	53
296	Increased PARP-1 association with DNA in alkylation damaged, PARP-inhibited mouse fibroblasts. <i>Molecular Cancer Research</i> , 2012 , 10, 360-8	6.6	52
295	Local deformations revealed by dynamics simulations of DNA polymerase Beta with DNA mismatches at the primer terminus. <i>Journal of Molecular Biology</i> , 2002 , 321, 459-78	6.5	52
294	Three-dimensional solution structure of the N-terminal domain of DNA polymerase beta and mapping of the ssDNA interaction interface. <i>Biochemistry</i> , 1996 , 35, 6188-200	3.2	52
293	(R)-beta,gamma-fluoromethylene-dGTP-DNA ternary complex with DNA polymerase beta. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15412-3	16.4	51
292	Base substitution specificity of DNA polymerase beta depends on interactions in the DNA minor groove. <i>Journal of Biological Chemistry</i> , 1999 , 274, 20749-52	5.4	51
291	Kinetic analysis of template.primer interactions with recombinant forms of HIV-1 reverse transcriptase. <i>Biochemistry</i> , 1993 , 32, 9745-53	3.2	51
290	Different structural states in oligonucleosomes are required for early versus late steps of base excision repair. <i>Nucleic Acids Research</i> , 2007 , 35, 4313-21	20.1	50
289	Dynamic characterization of a DNA repair enzyme: NMR studies of [methyl-13C]methionine-labeled DNA polymerase beta. <i>Biochemistry</i> , 2004 , 43, 8911-22	3.2	50
288	Hypersensitivity phenotypes associated with genetic and synthetic inhibitor-induced base excision repair deficiency. <i>DNA Repair</i> , 2007 , 6, 530-43	4.3	49
287	Interplay between DNA polymerases beta and lambda in repair of oxidation DNA damage in chicken DT40 cells. <i>DNA Repair</i> , 2007 , 6, 869-75	4.3	49
286	Regulation of in vitro nucleic acid strand annealing activity of heterogeneous nuclear ribonucleoprotein protein A1 by reversible phosphorylation. <i>Biochemistry</i> , 1994 , 33, 11382-90	3.2	49
285	DNA polymerase beta. International Journal of Biochemistry and Cell Biology, 2002, 34, 321-4	5.6	48
284	Mutagenic conformation of 8-oxo-7,8-dihydro-2'-dGTP in the confines of a DNA polymerase active site. <i>Nature Structural and Molecular Biology</i> , 2010 , 17, 889-90	17.6	47
283	Activities and mechanism of DNA polymerase beta. <i>Methods in Enzymology</i> , 2006 , 408, 91-107	1.7	47
282	Subunits of human replication protein A are crosslinked by photoreactive primers synthesized by DNA polymerases. <i>Nucleic Acids Research</i> , 1998 , 26, 602-7	20.1	47
281	Purification and characterization of the RNase H domain of HIV-1 reverse transcriptase expressed in recombinant Escherichia coli. <i>FEBS Letters</i> , 1990 , 270, 76-80	3.8	47

280	Localization of a polynucleotide binding region in the HIV-1 reverse transcriptase: implications for primer binding. <i>Biochemistry</i> , 1991 , 30, 10623-31	3.2	47	
279	Pol lassociated complex and base excision repair factors in mouse fibroblasts. <i>Nucleic Acids Research</i> , 2012 , 40, 11571-82	20.1	46	
278	Incorrect nucleotide insertion at the active site of a G:A mismatch catalyzed by DNA polymerase beta. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 5670-4	11.5	46	
277	The ATF/CREB transcription factor-binding site in the polymerase beta promoter mediates the positive effect of N-methyl-N'-nitro-N-nitrosoguanidine on transcription. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1991 , 88, 3729-33	11.5	46	
276	Halogenated beta,gamma-methylene- and ethylidene-dGTP-DNA ternary complexes with DNA polymerase beta: structural evidence for stereospecific binding of the fluoromethylene analogues. Journal of the American Chemical Society, 2010, 132, 7617-25	16.4	45	
275	A real-time fluorescence method for enzymatic characterization of specialized human DNA polymerases. <i>Nucleic Acids Research</i> , 2009 , 37, e128	20.1	45	
274	Recombinogenic phenotype of human activation-induced cytosine deaminase. <i>Journal of Immunology</i> , 2004 , 172, 4308-13	5.3	45	
273	Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E5228-36	11.5	44	
272	Activation of the human DNA polymerase beta promoter by a DNA-alkylating agent through induced phosphorylation of cAMP response element-binding protein-1. <i>Journal of Biological Chemistry</i> , 1996 , 271, 18508-13	5.4	44	
271	Progress toward molecular biology of DNA polymerase beta. <i>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms</i> , 1988 , 949, 149-57		44	
270	Cultured cell systems and methods for neurobiology. <i>Methods in Enzymology</i> , 1974 , 32, 765-88	1.7	44	
269	Highly organized but pliant active site of DNA polymerase beta: compensatory mechanisms in mutant enzymes revealed by dynamics simulations and energy analyses. <i>Biophysical Journal</i> , 2004 , 86, 3392-408	2.9	43	
268	Role of the "helix clamp" in HIV-1 reverse transcriptase catalytic cycling as revealed by alanine-scanning mutagenesis. <i>Journal of Biological Chemistry</i> , 1996 , 271, 12213-20	5.4	43	
267	Residues in the alphaH and alphaI helices of the HIV-1 reverse transcriptase thumb subdomain required for the specificity of RNase H-catalyzed removal of the polypurine tract primer. <i>Journal of Biological Chemistry</i> , 1999 , 274, 19885-93	5.4	42	
266	Structure/function studies of HIV-1(1) reverse transcriptase: dimerization-defective mutant L289K. <i>Biochemistry</i> , 1993 , 32, 13012-8	3.2	42	
265	Studies on the relationship between deoxyribonucleic acid polymerase activity and intracisternal A-type particles in mouse myeloma. <i>Biochemistry</i> , 1974 , 13, 1087-94	3.2	42	
264	Multiple forms of DNA polymerase in mouse myeloma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1974 , 71, 578-82	11.5	42	
263	Studies on the physiology of rat liver polyribosomes: quantition and intracellular distribution of ribosomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1965 , 54, 600-7	11.5	42	

262	Time-lapse crystallography snapshots of a double-strand break repair polymerase in action. <i>Nature Communications</i> , 2017 , 8, 253	17.4	41
261	Alkylation DNA damage in combination with PARP inhibition results in formation of S-phase-dependent double-strand breaks. <i>DNA Repair</i> , 2010 , 9, 929-36	4.3	41
260	Exploring the role of large conformational changes in the fidelity of DNA polymerase beta. <i>Proteins: Structure, Function and Bioinformatics</i> , 2008 , 70, 231-47	4.2	41
259	Uniquely altered DNA replication fidelity conferred by an amino acid change in the nucleotide binding pocket of human immunodeficiency virus type 1 reverse transcriptase. <i>Journal of Biological Chemistry</i> , 1999 , 274, 32924-30	5.4	41
258	Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. <i>Journal of Clinical Investigation</i> , 2004 , 113, 1711-21	15.9	41
257	Predicting enhanced cell killing through PARP inhibition. <i>Molecular Cancer Research</i> , 2013 , 11, 13-8	6.6	40
256	Structures of dNTP intermediate states during DNA polymerase active site assembly. <i>Structure</i> , 2012 , 20, 1829-37	5.2	40
255	DNA polymerase beta-dependent long patch base excision repair in living cells. <i>DNA Repair</i> , 2010 , 9, 109	9 ₄ 1.9	40
254	Mapping of the interaction interface of DNA polymerase beta with XRCC1. Structure, 2002, 10, 1709-20	5.2	40
253	DNA polymerase beta and mammalian base excision repair. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2000 , 65, 143-55	3.9	40
252	Alpha,beta-difluoromethylene deoxynucleoside 5'-triphosphates: a convenient synthesis of useful probes for DNA polymerase beta structure and function. <i>Organic Letters</i> , 2009 , 11, 1883-6	6.2	39
251	DNA polymerase beta in abasic site repair: a structurally conserved helix-hairpin-helix motif in lesion detection by base excision repair enzymes. <i>Biochemistry</i> , 1997 , 36, 4713-7	3.2	39
250	Micro-irradiation tools to visualize base excision repair and single-strand break repair. <i>DNA Repair</i> , 2015 , 31, 52-63	4.3	38
249	A review of recent experiments on step-to-step Band-offlof the DNA intermediates in mammalian base excision repair pathways. <i>Molecular Biology</i> , 2011 , 45, 536-550	1.2	38
248	Molecular insights into DNA polymerase deterrents for ribonucleotide insertion. <i>Journal of Biological Chemistry</i> , 2011 , 286, 31650-60	5.4	38
247	Structural homology among calf thymus alpha-polymerase polypeptides. <i>Nucleic Acids Research</i> , 1982 , 10, 935-46	20.1	38
246	Damage sensor role of UV-DDB during base excision repair. <i>Nature Structural and Molecular Biology</i> , 2019 , 26, 695-703	17.6	37
245	Lucanthone and its derivative hycanthone inhibit apurinic endonuclease-1 (APE1) by direct protein binding. <i>PLoS ONE</i> , 2011 , 6, e23679	3.7	37

(1991-2013)

244	Amino acid substitution in the active site of DNA polymerase Explains the energy barrier of the nucleotidyl transfer reaction. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8078-88	16.4	36	
243	Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis-(difluoromethylene)triphosphoric acid. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 15693-8	11.5	36	
242	DNA polymerase beta and PARP activities in base excision repair in living cells. DNA Repair, 2009, 8, 129) 0493	36	
241	Identification of a higher molecular weight DNA polymerase alpha catalytic polypeptide in monkey cells by monoclonal antibody. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1984 , 81, 7777-81	11.5	36	
240	Polynucleotide recognition by DNA alpha-polymerase. <i>Nucleic Acids Research</i> , 1977 , 4, 3981-96	20.1	36	
239	The utilization of genes for ribosomal RNA, 5S RNA, and transfer RNA in liver cells of adult rats. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1969 , 64, 981-8	11.5	36	
238	Transcriptional mutagenesis mediated by 8-oxoG induces translational errors in mammalian cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 4218-4222	11.5	35	
237	Preventing oxidation of cellular XRCC1 affects PARP-mediated DNA damage responses. <i>DNA Repair</i> , 2013 , 12, 774-85	4.3	35	
236	Alternative splicing as a mechanism for regulating 14-3-3 binding: interactions between hD53 (TPD52L1) and 14-3-3 proteins. <i>Journal of Molecular Biology</i> , 2003 , 332, 675-87	6.5	35	
235	Nucleotide-induced DNA polymerase active site motions accommodating a mutagenic DNA intermediate. <i>Structure</i> , 2005 , 13, 1225-33	5.2	35	
234	A type IB topoisomerase with DNA repair activities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 6015-20	11.5	35	
233	Oxidized nucleotide insertion by pol Lonfounds ligation during base excision repair. <i>Nature Communications</i> , 2017 , 8, 14045	17.4	34	
232	Structural comparison of DNA polymerase architecture suggests a nucleotide gateway to the polymerase active site. <i>Chemical Reviews</i> , 2014 , 114, 2759-74	68.1	34	
231	Vertical-scanning mutagenesis of a critical tryptophan in the minor groove binding track of HIV-1 reverse transcriptase. Molecular nature of polymerase-nucleic acid interactions. <i>Journal of Biological Chemistry</i> , 1998 , 273, 30435-42	5.4	34	
230	DNA polymerase 🛮 A missing link of the base excision repair machinery in mammalian mitochondria. <i>DNA Repair</i> , 2017 , 60, 77-88	4.3	33	
229	Mammalian Base Excision Repair: Functional Partnership between PARP-1 and APE1 in AP-Site Repair. <i>PLoS ONE</i> , 2015 , 10, e0124269	3.7	33	
228	DNA sequence context effects on the glycosylase activity of human 8-oxoguanine DNA glycosylase. <i>Journal of Biological Chemistry</i> , 2012 , 287, 36702-10	5.4	33	
227	Mammalian beta-polymerase promoter: large-scale purification and properties of ATF/CREB palindrome binding protein from bovine testes. <i>Biochemistry</i> , 1991 , 30, 6296-305	3.2	33	

226	Perspective: pre-chemistry conformational changes in DNA polymerase mechanisms. <i>Theoretical Chemistry Accounts</i> , 2012 , 131, 1287	1.9	32
225	DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. <i>Nucleic Acids Research</i> , 2013 , 41, 1848-58	20.1	32
224	HMGN1 protein regulates poly(ADP-ribose) polymerase-1 (PARP-1) self-PARylation in mouse fibroblasts. <i>Journal of Biological Chemistry</i> , 2012 , 287, 27648-58	5.4	32
223	Interaction between PARP-1 and ATR in mouse fibroblasts is blocked by PARP inhibition. <i>DNA Repair</i> , 2008 , 7, 1787-98	4.3	32
222	The human DNA polymerase beta gene structure. Evidence of alternative splicing in gene expression. <i>Nucleic Acids Research</i> , 1994 , 22, 2719-25	20.1	32
221	Assignments of 1H, 15N, and 13C resonances for the backbone and side chains of the N-terminal domain of DNA polymerase beta. Determination of the secondary structure and tertiary contacts. <i>Biochemistry</i> , 1994 , 33, 9537-45	3.2	32
220	Bisphenol a promotes cell survival following oxidative DNA damage in mouse fibroblasts. <i>PLoS ONE</i> , 2015 , 10, e0118819	3.7	31
219	Rapid segmental and subdomain motions of DNA polymerase beta. <i>Journal of Biological Chemistry</i> , 2003 , 278, 5072-81	5.4	31
218	Phorbol ester abrogates up-regulation of DNA polymerase beta by DNA-alkylating agents in Chinese hamster ovary cells. <i>Journal of Biological Chemistry</i> , 1995 , 270, 16402-8	5.4	31
217	Base excision repair and design of small molecule inhibitors of human DNA polymerase []Cellular and Molecular Life Sciences, 2010, 67, 3633-47	10.3	30
216	Vertical-scanning mutagenesis of a critical tryptophan in the "minor groove binding track" of HIV-1 reverse transcriptase. Major groove DNA adducts identify specific protein interactions in the minor groove. <i>Journal of Biological Chemistry</i> , 2000 , 275, 15025-33	5.4	30
215	Specific inhibition of DNA polymerase beta by its 14 kDa domain: role of single- and double-stranded DNA binding and 5'-phosphate recognition. <i>Nucleic Acids Research</i> , 1995 , 23, 1597-603	20.1	30
214	DNA damage-induced transcriptional activation of a human DNA polymerase beta chimeric promoter: recruitment of preinitiation complex in vitro by ATF/CREB. <i>Biochemistry</i> , 1995 , 34, 73-80	3.2	29
213	DNA polymerases alpha and beta are required for DNA repair in an efficient nuclear extract from Xenopus oocytes. <i>Journal of Biological Chemistry</i> , 1996 , 271, 13816-20	5.4	29
212	Transfected human beta-polymerase promoter contains a ras-responsive element. <i>Molecular and Cellular Biology</i> , 1990 , 10, 3852-6	4.8	29
211	Role of polymerase In complementing aprataxin deficiency during abasic-site base excision repair. <i>Nature Structural and Molecular Biology</i> , 2014 , 21, 497-9	17.6	28
210	IPCHF- and IPCHCl-dGTP diastereomers: synthesis, discrete 31P NMR signatures, and absolute configurations of new stereochemical probes for DNA polymerases. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8734-7	16.4	28
209	FEN1 functions in long patch base excision repair under conditions of oxidative stress in vertebrate cells. <i>Molecular Cancer Research</i> , 2010 , 8, 204-15	6.6	28

208	Metal-induced DNA translocation leads to DNA polymerase conformational activation. <i>Nucleic Acids Research</i> , 2012 , 40, 2974-83	20.1	28
207	The domain organization and properties of individual domains of DNA topoisomerase V, a type 1B topoisomerase with DNA repair activities. <i>Journal of Biological Chemistry</i> , 2002 , 277, 4959-65	5.4	28
206	Protein binding elements in the human beta-polymerase promoter. <i>Nucleic Acids Research</i> , 1990 , 18, 919-28	20.1	28
205	Down-regulation of DNA polymerase beta accompanies somatic hypermutation in human BL2 cell lines. <i>DNA Repair</i> , 2007 , 6, 244-53	4.3	27
204	A thymine isostere in the templating position disrupts assembly of the closed DNA polymerase beta ternary complex. <i>Biochemistry</i> , 2005 , 44, 15230-7	3.2	27
203	The base substitution fidelity of DNA polymerase beta-dependent single nucleotide base excision repair. <i>Journal of Biological Chemistry</i> , 2003 , 278, 25947-51	5.4	27
202	dNTP binding to HIV-1 reverse transcriptase and mammalian DNA polymerase beta as revealed by affinity labeling with a photoreactive dNTP analog. <i>Journal of Biological Chemistry</i> , 1996 , 271, 21891-7	5.4	27
201	Chromosomal location of the human gene for DNA polymerase beta. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1987 , 84, 503-7	11.5	27
200	Strategic Combination of DNA-Damaging Agent and PARP Inhibitor Results in Enhanced Cytotoxicity. <i>Frontiers in Oncology</i> , 2013 , 3, 257	5.3	26
199	Probing structure/function relationships of HIV-1 reverse transcriptase with styrene oxide N2-guanine adducts. <i>Journal of Biological Chemistry</i> , 1997 , 272, 8525-30	5.4	26
198	Base excision repair in nucleosomes lacking histone tails. <i>DNA Repair</i> , 2005 , 4, 203-9	4.3	26
197	Involvement of poly(ADP-ribose) polymerase activity in regulating Chk1-dependent apoptotic cell death. <i>DNA Repair</i> , 2005 , 4, 1111-20	4.3	26
196	High-level expression and purification of untagged and histidine-tagged HIV-1 reverse transcriptase. <i>Protein Expression and Purification</i> , 2004 , 34, 75-86	2	26
195	HIV-1 reverse transcriptase: inhibition by 2',5'-oligoadenylates. <i>Biochemistry</i> , 1993 , 32, 12112-8	3.2	26
194	Characterization of the tryptophan fluorescence and hydrodynamic properties of rat DNA polymerase beta. <i>Journal of Molecular Biology</i> , 1994 , 244, 224-35	6.5	26
193	Mammalian DNA polymerase beta: characterization of a 16-kDa transdomain fragment containing the nucleic acid-binding activities of the native enzyme. <i>Biochemistry</i> , 1992 , 31, 10272-80	3.2	26
192	Repair pathway for PARP-1 DNA-protein crosslinks. <i>DNA Repair</i> , 2019 , 73, 71-77	4.3	26
191	Human immunodeficiency virus type 1 reverse transcriptase. 3'-Azidodeoxythymidine 5'-triphosphate inhibition indicates two-step binding for template-primer. <i>Journal of Biological Chemistry</i> , 1995 , 270, 9740-7	5.4	25

190	Active-site modification of mammalian DNA polymerase beta with pyridoxal 5'-phosphate: mechanism of inhibition and identification of lysine 71 in the deoxynucleoside triphosphate binding pocket. <i>Biochemistry</i> , 1989 , 28, 6305-9	3.2	25
189	Potential for two isoforms of the A1 ribonucleoprotein in Xenopus laevis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1990 , 87, 1367-71	11.5	25
188	Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair. <i>DNA Repair</i> , 2015 , 35, 85-9	4.3	24
187	Transition state in DNA polymerase leatalysis: rate-limiting chemistry altered by base-pair configuration. <i>Biochemistry</i> , 2014 , 53, 1842-8	3.2	24
186	Substrate-induced DNA polymerase lactivation. <i>Journal of Biological Chemistry</i> , 2014 , 289, 31411-22	5.4	24
185	Genetic relatedness of human DNA polymerase beta and terminal deoxynucleotidyltransferase. <i>Gene</i> , 1987 , 60, 163-73	3.8	24
184	DNA scanning by base excision repair enzymes and implications for pathway coordination. <i>DNA Repair</i> , 2018 , 71, 101-107	4.3	24
183	Stereospecific formation of a ternary complex of (S)-∰fluoromethylene-dATP with DNA pol ☐ <i>ChemBioChem</i> , 2012 , 13, 528-30	3.8	23
182	Nuclear Localization of the DNA Repair Scaffold XRCC1: Uncovering the Functional Role of a Bipartite NLS. <i>Scientific Reports</i> , 2015 , 5, 13405	4.9	23
181	Hyperactivation of PARP triggers nonhomologous end-joining in repair-deficient mouse fibroblasts. <i>PLoS ONE</i> , 2012 , 7, e49301	3.7	23
180	Structure of DNA polymerase beta with a benzo[c]phenanthrene diol epoxide-adducted template exhibits mutagenic features. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 17231-6	11.5	23
179	Structures of DNA Polymerase Mispaired DNA Termini Transitioning to Pre-catalytic Complexes Support an Induced-Fit Fidelity Mechanism. <i>Structure</i> , 2016 , 24, 1863-1875	5.2	22
178	Revealing the role of the product metal in DNA polymerase leatalysis. <i>Nucleic Acids Research</i> , 2017 , 45, 2736-2745	20.1	22
177	ATR signaling mediates an S-phase checkpoint after inhibition of poly(ADP-ribose) polymerase activity. <i>DNA Repair</i> , 2007 , 6, 742-50	4.3	22
176	REV1 mediated mutagenesis in base excision repair deficient mouse fibroblast. <i>DNA Repair</i> , 2005 , 4, 1182-8	4.3	22
175	Regulated over-expression of DNA polymerase beta mediates early onset cataract in mice. <i>DNA Repair</i> , 2003 , 2, 609-22	4.3	22
174	Mammalian beta-polymerase promoter: phosphorylation of ATF/CRE-binding protein and regulation of DNA binding. <i>Nucleic Acids Research</i> , 1991 , 19, 3369-75	20.1	22
173	DNA damage response of cloned DNA beta-polymerase promoter is blocked in mutant cell lines deficient in protein kinase A. <i>Nucleic Acids Research</i> , 1992 , 20, 5527-31	20.1	22

(2009-1973)

172	Investigation of methods for measurement of radioactivity in tritiated DNA and applications to assays for DNA polymerase activity. <i>Analytical Biochemistry</i> , 1973 , 56, 196-207	3.1	22
171	Base excision repair of tandem modifications in a methylated CpG dinucleotide. <i>Journal of Biological Chemistry</i> , 2014 , 289, 13996-4008	5.4	21
170	Single-nucleotide base excision repair DNA polymerase activity in C. elegans in the absence of DNA polymerase [INucleic Acids Research, 2012, 40, 670-81]	20.1	21
169	DNA lesion bypass polymerases open up. <i>Structure</i> , 2001 , 9, 759-64	5.2	21
168	Identification of novel mRNA isoforms for human DNA polymerase beta. <i>DNA and Cell Biology</i> , 1996 , 15, 653-9	3.6	21
167	Identification of the mouse low-salt-eluting single-stranded DNA-binding protein as a mammalian lactate dehydrogenase-A isoenzyme. <i>Biochemical Journal</i> , 1986 , 233, 913-6	3.8	21
166	Differing conformational pathways before and after chemistry for insertion of dATP versus dCTP opposite 8-oxoG in DNA polymerase beta. <i>Biophysical Journal</i> , 2007 , 92, 3063-70	2.9	20
165	Comparative assessment of plasmid and oligonucleotide DNA substrates in measurement of in vitro base excision repair activity. <i>Nucleic Acids Research</i> , 2007 , 35, e112	20.1	20
164	Modulation of base excision repair by low density lipoprotein, oxidized low density lipoprotein and antioxidants in mouse monocytes. <i>Carcinogenesis</i> , 2000 , 21, 1017-22	4.6	20
163	Replication of O6-methylguanine-containing DNA by repair and replicative DNA polymerases. Journal of Biological Chemistry, 1996 , 271, 20088-95	5.4	20
162	Levels and size complexity of DNA polymerase beta mRNA in rat regenerating liver and other organs. <i>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms</i> , 1989 , 1008, 203-7		20
161	Phylogenetic analysis and evolutionary origins of DNA polymerase X-family members. <i>DNA Repair</i> , 2014 , 22, 77-88	4.3	19
160	Shaping science policy in the age of genomics. <i>Nature Reviews Genetics</i> , 2004 , 5, 311-6	30.1	19
159	Mapping of the gene for DNA polymerase beta to mouse chromosome 8. <i>Cytogenetic and Genome Research</i> , 1990 , 53, 108-11	1.9	19
158	Physical studies of tyrosine and tryptophan residues in mammalian A1 heterogeneous nuclear ribonucleoprotein. Support for a segmented structure. <i>Journal of Molecular Biology</i> , 1991 , 221, 693-709	6.5	19
157	DNA polymerase luses its lyase domain in a processive search for DNA damage. <i>Nucleic Acids Research</i> , 2017 , 45, 3822-3832	20.1	18
156	Complementation of aprataxin deficiency by base excision repair enzymes. <i>Nucleic Acids Research</i> , 2015 , 43, 2271-81	20.1	18
155	PARP inhibition during alkylation-induced genotoxic stress signals a cell cycle checkpoint response mediated by ATM. <i>DNA Repair</i> , 2009 , 8, 1264-72	4.3	18

154	Combined Effects of High-Dose Bisphenol A and Oxidizing Agent (KBrO3) on Cellular Microenvironment, Gene Expression, and Chromatin Structure of Ku70-deficient Mouse Embryonic Fibroblasts. <i>Environmental Health Perspectives</i> , 2016 , 124, 1241-52	8.4	18
153	Modulating the DNA polymerase Ireaction equilibrium to dissect the reverse reaction. <i>Nature Chemical Biology</i> , 2017 , 13, 1074-1080	11.7	17
152	Oxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability. <i>Nucleic Acids Research</i> , 2016 , 44, 5190-203	20.1	17
151	Role of the oxidized form of XRCC1 in protection against extreme oxidative stress. <i>Free Radical Biology and Medicine</i> , 2017 , 107, 292-300	7.8	16
150	Effect of IECHF- and IECHCl-dGTP halogen atom stereochemistry on the transition state of DNA polymerase []Biochemistry, 2012, 51, 8491-501	3.2	16
149	Insights into the mechanism of the Elimination catalyzed by the N-terminal domain of DNA polymerase [] <i>Tetrahedron</i> , 1997 , 53, 12057-12066	2.4	16
148	Mutagenesis is elevated in male germ cells obtained from DNA polymerase-beta heterozygous mice. <i>Biology of Reproduction</i> , 2008 , 79, 824-31	3.9	16
147	Interactions between DNA polymerase beta and the major covalent adduct of the carcinogen (+)-anti-benzo[a]pyrene diol epoxide with DNA at a primer-template junction. <i>Biochemistry</i> , 1998 , 37, 878-84	3.2	16
146	DNA polymerase Edependent cell survival independent of XRCC1 expression. <i>DNA Repair</i> , 2015 , 26, 23-9	4.3	15
145	DNA polymerase Igap-filling translesion DNA synthesis. Chemical Research in Toxicology, 2012, 25, 2744	-5 ₄ 4	15
144	Gastrointestinal hyperplasia with altered expression of DNA polymerase beta. PLoS ONE, 2009, 4, e649	33.7	15
143	Purification and characterization of a DNA polymerase beta promoter initiator element-binding transcription factor from bovine testis. <i>Biochemistry</i> , 1996 , 35, 1775-82	3.2	15
142	Probing DNA Base-Dependent Leaving Group Kinetic Effects on the DNA Polymerase Transition State. <i>Biochemistry</i> , 2018 , 57, 3925-3933	3.2	14
141	DNA polymerase beta and other gap-filling enzymes in mammalian base excision repair. <i>The Enzymes</i> , 2019 , 45, 1-26	2.3	14
140	Complementation of aprataxin deficiency by base excision repair enzymes in mitochondrial extracts. <i>Nucleic Acids Research</i> , 2017 , 45, 10079-10088	20.1	14
139	DNA damage response protein ASCIZ links base excision repair with immunoglobulin gene conversion. <i>Biochemical and Biophysical Research Communications</i> , 2008 , 371, 225-9	3.4	14
138	The HIV-1 transactivator protein Tat is a potent inducer of the human DNA repair enzyme beta-polymerase. <i>Aids</i> , 2001 , 15, 433-40	3.5	14
137	The bovine DNA polymerase beta promoter: cloning, characterization and comparison with the human core promoter. <i>Gene</i> , 1995 , 164, 323-7	3.8	14

136	dNTP binding site in rat DNA polymerase beta revealed by controlled proteolysis and azido photoprobe cross-linking. <i>Biochemistry</i> , 1996 , 35, 3728-34	3.2	14
135	Mapping of nucleic acid binding in proteolytic domains of HIV-1 reverse transcriptase. <i>Biochemistry</i> , 1993 , 32, 7466-74	3.2	14
134	Antibodies from patients and mice with autoimmune diseases react with recombinant hnRNP core protein A1. <i>Journal of Autoimmunity</i> , 1988 , 1, 73-83	15.5	14
133	Genomic and evolutionary classification of lung cancer in never smokers. <i>Nature Genetics</i> , 2021 , 53, 134	8 3 6359	9 14
132	Impact of Ribonucleotide Backbone on Translesion Synthesis and Repair of 7,8-Dihydro-8-oxoguanine. <i>Journal of Biological Chemistry</i> , 2016 , 291, 24314-24323	5.4	13
131	New structural snapshots provide molecular insights into the mechanism of high fidelity DNA synthesis. <i>DNA Repair</i> , 2015 , 32, 3-9	4.3	13
130	Alpha,beta-methylene-2'-deoxynucleoside 5'-triphosphates as noncleavable substrates for DNA polymerases: isolation, characterization, and stability studies of novel 2'-deoxycyclonucleosides, 3,5'-cyclo-dG, and 2,5'-cyclo-dT. <i>Journal of Medicinal Chemistry</i> , 2008 , 51, 6460-70	8.3	13
129	Binary system for selective photoaffinity labeling of base excision repair DNA polymerases. <i>Nucleic Acids Research</i> , 2002 , 30, e73	20.1	13
128	Molecular cloning and high-level expression of human polymerase beta cDNA and comparison of the purified recombinant human and rat enzymes. <i>Protein Expression and Purification</i> , 2000 , 18, 100-10	2	13
127	Studies on primer binding of HIV-1 reverse transcriptase using a fluorescent probe. <i>Journal of Molecular Biology</i> , 1994 , 236, 469-79	6.5	13
126	The cloned promoter of the human DNA beta-polymerase gene contains a cAMP response element functional in HeLa cells. <i>DNA and Cell Biology</i> , 1992 , 11, 61-9	3.6	13
125	Properties and applications of new monoclonal antibodies raised against calf DNA polymerase alpha. <i>Analytical Biochemistry</i> , 1985 , 147, 10-21	3.1	13
124	Oncornavirus expression in human x mouse hybrid cells segregating mouse chromosomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1974 , 71, 1695-700	11.5	13
123	Oxidative DNA-protein crosslinks formed in mammalian cells by abasic site lyases involved in DNA repair. <i>DNA Repair</i> , 2020 , 87, 102773	4.3	13
122	Steady-state, pre-steady-state, and single-turnover kinetic measurement for DNA glycosylase activity. <i>Journal of Visualized Experiments</i> , 2013 , e50695	1.6	12
121	Disruption of transcription in vitro and gene expression in vivo by DNA adducts derived from a benzo[a]pyrene diol epoxide located in heterologous sequences. <i>Carcinogenesis</i> , 1997 , 18, 239-44	4.6	12
120	Kinetic analysis of Sp1-mediated transcriptional activation of the human DNA polymerase beta promoter. <i>Oncogene</i> , 2000 , 19, 4729-35	9.2	12
119	HIV-1 reverse transcriptase is phosphorylated in vitro and in a cellular system. <i>International Journal of Biochemistry and Cell Biology</i> , 1999 , 31, 1443-52	5.6	12

118	Differential sensitivity of low molecular weight DNA polymerase to sulfhydryl-blocking reagents. <i>Nucleic Acids and Protein Synthesis</i> , 1975 , 383, 338-43		12
117	Structural studies on avian myeloblastosis virus: conditions for isolation and biochemical characteristics of the core component. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1973 , 304, 1-11	4	12
116	Interaction between DNA Polymerase and BRCA1. PLoS ONE, 2013, 8, e66801	3.7	12
115	Rev1 is a base excision repair enzyme with 5'-deoxyribose phosphate lyase activity. <i>Nucleic Acids Research</i> , 2016 , 44, 10824-10833	20.1	12
114	Mitochondrial dysfunction and DNA damage accompany enhanced levels of formaldehyde in cultured primary human fibroblasts. <i>Scientific Reports</i> , 2020 , 10, 5575	4.9	11
113	Unencumbered Pol Ilyase activity in nucleosome core particles. <i>Nucleic Acids Research</i> , 2017 , 45, 8901-8	93 5.1	11
112	Determination of lysine pK values using [5-13C]lysine: application to the lyase domain of DNA Pol beta. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8104-5	16.4	11
111	DNA polymerase beta gene expression: the promoter activator CREB-1 is upregulated in Chinese hamster ovary cells by DNA alkylating agent-induced stress. <i>Biological Chemistry</i> , 2003 , 384, 19-23	4.5	11
110	DNA polymerase and simian virus 40 infection of resting monkey cells: induction of aphidicolin resistant alpha-polymerase. <i>Nucleic Acids Research</i> , 1983 , 11, 8253-68	20.1	11
109	Site-specific modification of Escherichia coli DNA polymerase I large fragment with pyridoxal 5'-phosphate. <i>Biochemistry</i> , 1984 , 23, 2073-8	3.2	11
108	Template specific inhibitor of mammalian DNA polymerases. <i>Nucleic Acids Research</i> , 1976 , 3, 825-34	20.1	11
107	The Environmental Genome Project: phase I and beyond. <i>Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics</i> , 2004 , 4, 147-56		11
106	Processive searching ability varies among members of the gap-filling DNA polymerase X family. Journal of Biological Chemistry, 2017 , 292, 17473-17481	5.4	10
105	Deregulation of DNA polymerase beta by sense and antisense RNA expression in mouse 3T3 cells alters cell growth. <i>Somatic Cell and Molecular Genetics</i> , 1990 , 16, 311-20		10
104	Synthesis of DNA polymerase by in vitro translation of calf RNA. <i>Biochemical and Biophysical Research Communications</i> , 1984 , 122, 420-7	3.4	10
103	RNA abasic sites in yeast and human cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 20689-20695	11.5	10
102	Pol dGTP mismatch insertion opposite T coupled with ligation reveals promutagenic DNA repair intermediate. <i>Nature Communications</i> , 2018 , 9, 4213	17.4	10
101	DNA polymerase ©contains a functional nuclear localization signal at its N-terminus. <i>Nucleic Acids Research</i> , 2017 , 45, 1958-1970	20.1	9

100	XRCC1 phosphorylation affects aprataxin recruitment and DNA deadenylation activity. <i>DNA Repair</i> , 2018 , 64, 26-33	4.3	9
99	Mapping Functional Substrate-Enzyme Interactions in the pol [Active Site through Chemical Biology: Structural Responses to Acidity Modification of Incoming dNTPs. <i>Biochemistry</i> , 2018 , 57, 3934-	-3 9 .44	9
98	Optimal and variant metal-ion routes in DNA polymerase is conformational pathways. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3630-9	16.4	9
97	A Molecular Dynamics Model of HIV-1 Reverse Transcriptase Complexed with DNA: Comparison with Experimental Structures. <i>Journal of Molecular Modeling</i> , 2000 , 6, 575-586	2	9
96	Selective photochemical modification by trichloroethanol of tryptophan residues in proteins with a high tyrosine-to-tryptophan ratio. <i>Analytical Biochemistry</i> , 1992 , 205, 27-35	3.1	9
95	Measurement of DNA polymerase beta in skin fibroblast cell lines from patients with ataxia telangiectasia. <i>Mutation Research - DNA Repair Reports</i> , 1985 , 146, 295-300		9
94	Hiding in Plain Sight: The Bimetallic Magnesium Covalent Bond in Enzyme Active Sites. <i>Inorganic Chemistry</i> , 2017 , 56, 313-320	5.1	8
93	XRCC1-mediated repair of strand breaks independent of PNKP binding. DNA Repair, 2017, 60, 52-63	4.3	8
92	Topoisomerase I-driven repair of UV-induced damage in NER-deficient cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 14412-14420	11.5	8
91	Substrate rescue of DNA polymerase Leontaining a catastrophic L22P mutation. <i>Biochemistry</i> , 2014 , 53, 2413-22	3.2	8
90	Two Scaffolds from Two Flips: (孫)(即CH2/NH "Met-Im" Analogues of dTTP. <i>Organic Letters</i> , 2015 , 17, 2586-9	6.2	8
89	Mutagenesis dependent upon the combination of activation-induced deaminase expression and a double-strand break. <i>Molecular Immunology</i> , 2010 , 48, 164-70	4.3	8
88	Negligible impact of pol iota expression on the alkylation sensitivity of pol beta-deficient mouse fibroblast cells. <i>DNA Repair</i> , 2008 , 7, 830-3	4.3	8
87	Expression of polypeptides of human immunodeficiency virus-1 reverse transcriptase in Escherichia coli. <i>Protein Expression and Purification</i> , 1993 , 4, 187-99	2	8
86	On the measurement of tritium in DNA and its applications to the assay of DNA polymerase activity. <i>Methods in Cell Biology</i> , 1976 , 13, 105-20	1.8	8
85	Measurement of the rate and velocity of movement by single heart cells in culture. <i>American Journal of Cardiology</i> , 1973 , 32, 162-6	3	8
84	The Need for Exposure Health Sciences. Environmental Health Perspectives, 2005, 113, A650-A650	8.4	8
83	A Transition-State Perspective on Y-Family DNA Polymerase Fidelity in Comparison with X-Family DNA Polymerases and []Biochemistry, 2019 , 58, 1764-1773	3.2	7

82	Molecular basis for the faithful replication of 5-methylcytosine and its oxidized forms by DNA polymerase []Journal of Biological Chemistry, 2019 , 294, 7194-7201	5.4	7
81	Insertion of oxidized nucleotide triggers rapid DNA polymerase opening. <i>Nucleic Acids Research</i> , 2016 , 44, 4409-24	20.1	7
80	Requirement for NBS1 in the S phase checkpoint response to DNA methylation combined with PARP inhibition. <i>DNA Repair</i> , 2011 , 10, 225-34	4.3	7
79	Human DNA Polymerase-beta Promoter: Phorbol Ester Activation Is Mediated through the cAMP Response Element and cAMP-Response-Element-Binding Protein. <i>Journal of Biomedical Science</i> , 1997 , 4, 279-288	13.3	7
78	Cloning and characterization of a novel member of the human ATF/CREB family: ATF2 deletion, a potential regulator of the human DNA polymerase beta promoter. <i>Gene</i> , 2003 , 312, 117-24	3.8	7
77	The need for exposure health sciences. Environmental Health Perspectives, 2005, 113, A650	8.4	6
76	Kinetic analysis of Sp1-mediated transcriptional activation of a TATA-containing promoter. <i>Biochemistry</i> , 2000 , 39, 818-23	3.2	6
75	Identification of a nuclear protein binding element within the rat brain protein kinase C gamma promoter that is related to the developmental control of this gene. <i>FEBS Letters</i> , 1993 , 325, 210-4	3.8	6
74	Native species of helix destabilizing protein-1 in mouse myeloma identified by antibody probing of Western blots. <i>Biochemical and Biophysical Research Communications</i> , 1985 , 131, 362-9	3.4	6
73	Distinction between mouse DNA polymerases alpha and beta by tryptic peptide mapping. <i>Nucleic Acids Research</i> , 1980 , 8, 2771-82	20.1	6
72	Patterns of albumin and general protein synthesis in rat liver as revealed by gel electrophoresis. <i>Nucleic Acids and Protein Synthesis</i> , 1972 , 269, 477-84		6
71	Disease-First: A New Paradigm for Environmental Health Science Research. <i>Environmental Health Perspectives</i> , 2006 , 114, A398-A398	8.4	6
70	Enzymatic Activity Assays in Yeast Cell Extracts. <i>Bio-protocol</i> , 2014 , 4,	0.9	6
69	Requirements for PARP-1 covalent crosslinking to DNA (PARP-1 DPC). DNA Repair, 2020 , 90, 102850	4.3	6
68	Shining light on the response to repair intermediates in DNA of living cells. DNA Repair, 2020, 85, 10274	19 4.3	6
67	A guardian residue hinders insertion of a FapyEGTP analog by modulating the open-closed DNA polymerase transition. <i>Nucleic Acids Research</i> , 2019 , 47, 3197-3207	20.1	5
66	Oxidative DNA Damage Modulates DNA Methylation Pattern in Human Breast Cancer 1 (BRCA1) Gene via the Crosstalk between DNA Polymerase and a DNA Methyltransferase. <i>Cells</i> , 2020 , 9,	7.9	5
65	Histone H3 Lysine 56 Acetylation Enhances AP Endonuclease 1-Mediated Repair of AP Sites in Nucleosome Core Particles. <i>Biochemistry</i> , 2019 , 58, 3646-3655	3.2	5

Designing a spatially aware and autonomous quadcopter 2013 ,		5
Role of DNA polymerase lbxidized nucleotide insertion in DNA ligation failure. <i>Journal of Radiation Research</i> , 2017 , 58, 603-607	2.4	5
Structures of human DNA polymerases and Expose their end game. <i>Nature Structural and Molecular Biology</i> , 2015 , 22, 273-5	17.6	5
Applications of quantum mechanical/molecular mechanical methods to the chemical insertion step of DNA and RNA polymerization. <i>Advances in Protein Chemistry and Structural Biology</i> , 2014 , 97, 83-113	5.3	5
Identification of one of the apurinic/apyrimidinic lyase active sites of topoisomerase V by structural and functional studies. <i>Nucleic Acids Research</i> , 2013 , 41, 657-66	20.1	5
Insights into the conformation of aminofluorene-deoxyguanine adduct in a DNA polymerase active site. <i>Journal of Biological Chemistry</i> , 2013 , 288, 23573-85	5.4	5
Characterization of DNA polymerase beta splicing variants in gastric cancer: the most frequent exon 2-deleted isoform is a non-coding RNA. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2009 , 670, 79-87	3.3	5
Mammalian alpha-polymerase: cloning of partial complementary DNA and immunobinding of catalytic subunit in crude homogenate protein blots. <i>Biochemistry</i> , 1987 , 26, 956-63	3.2	5
Stimulation of DNA polymerase activity by the combination of p-hydroxymercuribenzoate and dithiothreitol. <i>Biochemical and Biophysical Research Communications</i> , 1974 , 59, 243-51	3.4	5
A vinyl polymer with purine residues deficient in base pairing inhibits murine leukemia virus replication. <i>Biochemical and Biophysical Research Communications</i> , 1978 , 81, 217-23	3.4	5
Evidence for abasic site sugar phosphate-mediated cytotoxicity in alkylating agent treated Saccharomyces cerevisiae. <i>PLoS ONE</i> , 2012 , 7, e47945	3.7	5
The dark side of DNA repair. <i>ELife</i> , 2014 , 3, e03068	8.9	5
Lysines in the lyase active site of DNA polymerase destabilize nonspecific DNA binding, facilitating searching and DNA gap recognition. <i>Journal of Biological Chemistry</i> , 2020 , 295, 12181-12187	5.4	5
Perspectives on formaldehyde dysregulation: Mitochondrial DNA damage and repair in mammalian cells. <i>DNA Repair</i> , 2021 , 105, 103134	4.3	5
Reprint of "Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair". <i>DNA Repair</i> , 2015 , 36, 86-90	4.3	4
1H, 13C and 15N resonance assignments for the perdeuterated 22 kD palm-thumb domain of DNA polymerase beta. <i>Journal of Biomolecular NMR</i> , 2002 , 22, 197-8	3	4
Expression and purification of the HIV-1 reverse transcriptase using the baculovirus expression vector system. <i>Protein Expression and Purification</i> , 1993 , 4, 298-303	2	4
Anomalous electrophoretic migration of oligodeoxynucleotides with terminal -OH groups: applications for DNA exonuclease characterization. <i>Analytical Biochemistry</i> , 1983 , 129, 200-6	3.1	4
	Role of DNA polymerase lòxidized nucleotide insertion in DNA ligation failure. <i>Journal of Radiation Research</i> , 2017, 58, 603-607 Structures of human DNA polymerases lànd lèxpose their end game. <i>Nature Structural and Molecular Biology</i> , 2015, 22, 273-5 Applications of quantum mechanical/molecular mechanical methods to the chemical insertion step of DNA and RNA polymerization. <i>Advances in Protein Chemistry and Structural Biology</i> , 2014, 97, 83-113 Identification of one of the apurinic/apyrimidinic lyase active sites of topoisomerase V by structural and functional studies. <i>Nucleic Acids Research</i> , 2013, 41, 657-66 Insights into the conformation of aminofluorene-deoxyguanine adduct in a DNA polymerase active site. <i>Journal of Biological Chemistry</i> , 2013, 288, 23573-85 Characterization of DNA polymerase beta splicing variants in gastric cancer: the most frequent exon 2-deleted isoform is a non-coding RNA. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2009, 670, 79-87 Mammalian alpha-polymerase: cloning of partial complementary DNA and immunobinding of catalytic subunit in crude homogenate protein blots. <i>Biochemistry</i> , 1987, 26, 956-63 Stimulation of DNA polymerase activity by the combination of p-hydroxymercuribenzoate and dithiothreitol. <i>Biochemical and Biophysical Research Communications</i> , 1974, 59, 243-51 A vinyl polymer with purine residues deficient in base pairing inhibits murine leukemia virus replication. <i>Biochemical and Biophysical Research Communications</i> , 1978, 81, 217-23 Evidence for abasic site sugar phosphate-mediated cytotoxicity in alkylating agent treated Saccharomyces cerevisiae. <i>PLoS ONE</i> , 2012, 7, e47945 The dark side of DNA repair. <i>ELife</i> , 2014, 3, e03068 Lysines in the lyase active site of DNA polymerase Idestabilize nonspecific DNA binding, facilitating searching and DNA gap recognition. <i>Journal of Biological Chemistry</i> , 2020, 295, 12181-12187 Perspectives on formaldehyde dysregulation: Mitochondrial DNA damage and repair in mammalian cells. <i></i>	Role of DNA polymerase lbxidized nucleotide insertion in DNA ligation failure. Journal of Radiation Research, 2017, 58, 603-607 Structures of human DNA polymerases land lexpose their end game. Nature Structural and Molecular Biology, 2015, 22, 273-5 Applications of quantum mechanical/molecular mechanical methods to the chemical insertion step of DNA and RNA polymerization. Advances in Pratein Chemistry and Structural Biology, 2014, 97, 83-113 Identification of one of the apurinic/apyrimidinic lyase active sites of topoisomerase V by structural and functional studies. Nucleic Acids Research, 2013, 41, 657-66 Insights into the conformation of aminofluorene-deoxyguanine adduct in a DNA polymerase active sites. Journal of Biological Chemistry, 2013, 288, 23573-85 Characterization of DNA polymerase beta splicing variants in gastric cancer: the most frequent exon 2-deleted isoform is a non-coding RNA. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 670, 79-87 Mammalian alpha-polymerases cloning of partial complementary DNA and immunobinding of catalytic subunit in crude homogenate protein blots. Biochemistry, 1987, 26, 956-63 Stimulation of DNA polymerase activity by the combination of p-hydroxymercuribenzoate and dithiothreitol. Biochemical and Biophysical Research Communications, 1978, 81, 217-23 A vinyl polymer with purine residues deficient in base pairing inhibits murine leukemia virus replication. Biochemical and Biophysical Research Communications, 1978, 81, 217-23 34 Evidence for abasic site sugar phosphate-mediated cytotoxicity in alkylating agent treated Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e47945 The dark side of DNA repair. ELife, 2014, 3, e03068 Lysines in the lyase active site of DNA polymerase litestabilize nonspecific DNA binding, facilitating searching and DNA gap recognition. Journal of Biological Chemistry, 2020, 295, 12181-12187 Perspectives on formaldehyde dysregulation: Mitochondrial DNA damage and repair in mammalian cells. DNA Repair. 2015, 3

46	New assay technique for reactions that produce radioactive gases. <i>Analytical Biochemistry</i> , 1971 , 43, 460-7	3.1	4
45	Polydeoxythymidylate inhibition of rabbit reticulocyte RNA dependent protein synthesis in a Krebs II ascites cell system. <i>Biochemical and Biophysical Research Communications</i> , 1972 , 48, 1280-6	3.4	4
44	Requirements for PARP-1 covalent crosslinking to DNA (PARP-1 DPC). DNA Repair, 2020, 89, 102824	4.3	3
43	Pregnancy in sickle cell trait: what we do and don't know. British Journal of Haematology, 2020 , 190, 328	3- <u>4</u> 3-35	3
42	Cancer, the environment, and environmental justice. <i>Cancer</i> , 1998 , 83, 1784-1792	6.4	3
41	Disease-first: a new paradigm for environmental health science research. <i>Environmental Health Perspectives</i> , 2006 , 114, A398	8.4	3
40	Relationship between base excision repair capacity and DNA alkylating agent sensitivity in mouse monocytes. <i>Mutation Research DNA Repair</i> , 2001 , 487, 121-6		3
39	Requirement of mammalian DNA polymerase-lin base-excision repair. <i>Nature</i> , 1996 , 379, 848-848	50.4	3
38	Site-directed mutagenesis of HIV reverse transcriptase to probe enzyme processivity and drug binding. <i>Current Opinion in Biotechnology</i> , 1994 , 5, 414-21	11.4	3
37	Properties of a novel oligonucleotide-releasing bidirectional DNA exonuclease from mouse myeloma. <i>Biochemistry</i> , 1984 , 23, 908-14	3.2	3
36	Inhibition of cell-free globin synthesis by polydeoxythymidylate. <i>Nucleic Acids and Protein Synthesis</i> , 1973 , 294, 507-16		3
35	Framework for environmental exposure research: the disease-first approach. <i>Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics</i> , 2005 , 5, 262-7		3
34	Transitions in DNA polymerase III-ms dynamics related to substrate binding and catalysis. <i>Nucleic Acids Research</i> , 2018 , 46, 7309-7322	20.1	3
33	Central Steps in Mammalian BER and Regulation by PARP1 2017 , 253-280		2
32	The Pol Ivariant containing exon is deficient in DNA polymerase but has full dRP lyase activity. <i>Scientific Reports</i> , 2019 , 9, 9928	4.9	2
31	The 2nd US🏿apan DNA Repair Meeting, Honolulu, Hawaii, June 48, 2004. DNA Repair, 2004, 3, 1661-1674	1 4.3	2
30	Inhibitors of HIV-1 reverse transcriptase and fidelity of in vitro DNA replication. <i>Journal of Enzyme Inhibition and Medicinal Chemistry</i> , 1992 , 6, 35-46		2
29	Structural studies of avian myeloblastosis virus. <i>Nucleic Acids and Protein Synthesis</i> , 1974 , 361, 53-58		2

28	Studies on DNA synthesis in murine myeloma. II. Activation of latent RNA-dependent DNA polymerase activity in membrane fractions. <i>Biochemical and Biophysical Research Communications</i> , 1972 , 49, 1093-9	3.4	2
27	Assay to Measure DNA Polymerase [Nucleotide Insertion Coupled with the DNA Ligation Reaction during Base Excision Repair. <i>Bio-protocol</i> , 2017 , 7,	0.9	2
26	Base-Excision Repair: Role of DNA Polymerase (In Late-Stage Base Excision Repair 2011 , 297-319		2
25	Watching a double strand break repair polymerase insert a pro-mutagenic oxidized nucleotide. <i>Nature Communications</i> , 2021 , 12, 2059	17.4	2
24	Understanding the loss-of-function in a triple missense mutant of DNA polymerase Ifound in prostate cancer. <i>International Journal of Oncology</i> , 2013 , 43, 1131-40	4.4	1
23	Base Excision Repair, AP Endonucleases and DNA Glycosylases 2005,		1
22	Syn-full behavior by T7 DNA polymerase. <i>Structure</i> , 2005 , 13, 1580-2	5.2	1
21	Abasic Oligodeoxyribonucleoside Phosphorothioates as Inhibitors of the Human Immunodeficiency Virus-1 (HIV-1) Phosphorothioate Inhibition of HIV-1 Reverse Transcriptase and Interactions with Syrian Hampster Fibroblast (V79) Cells. <i>Nucleosides & Nucleotides</i> , 1991 , 10, 457-460		1
20	DNA Repair Models for Understanding Triplet Repeat Instability 2006, 667-678		1
19	Bisphenol A and Nongenotoxic Drivers of Cancer415-438		1
18	Characterization of a 32-Residue Peptide From Rat DNA Polymerase (With Single-Stranded DNA-Binding Affinity. <i>Techniques in Protein Chemistry</i> , 1994 , 5, 359-369		1
17	DNA polymerase Inucleotide-stabilized template misalignment fidelity depends on local sequence context. <i>Journal of Biological Chemistry</i> , 2020 , 295, 529-538	5.4	1
16	Structure of a DNA polymerase abortive complex with the 8OG:dA base pair at the primer terminus. <i>Communications Biology</i> , 2020 , 3, 348	6.7	1
15	Using Human Primary Foreskin Fibroblasts to Study Cellular Damage and Mitochondrial Dysfunction. <i>Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al]</i> , 2020 , 86, e99	1	1
14	Structural basis for proficient oxidized ribonucleotide insertion in double strand break repair. <i>Nature Communications</i> , 2021 , 12, 5055	17.4	0
13	Revealing an Internal Stabilization Deficiency in the DNA Polymerase IK289M Cancer Variant through the Combined Use of Chemical Biology and X-ray Crystallography. <i>Biochemistry</i> , 2020 , 59, 955.	-9 83	
12	Preferential DNA Polymerase Reverse Reaction with Imidodiphosphate. ACS Omega, 2020, 5, 15317-1.	53 <u>2</u> 4	
11	Human DNA Polymerase-Promoter: Phorbol Ester Activation Is Mediated through the cAMP Response Element and cAMP-Response-Element-Binding Protein. <i>Journal of Biomedical Science</i> , 1997 , 4, 279-288	13.3	

10	Strategic planning: establishing need and clarifying motivation. <i>Environmental Health Perspectives</i> , 2005 , 113, A506	8.4
9	Biophysical studies on the mammalian heterogeneous nuclear ribonucleoprotein, A1, and its component domains 1990 , 1204, 540	
8	Regulation of expression of type C virion DNA polymerase (reverse transcriptase) in human x mouse and human x rat hybrid cells. <i>Somatic Cell Genetics</i> , 1979 , 5, 991-1011	
7	DNA Polymerase [Eukaryotic 2004 , 708-712	
6	Mechanistic Analysis of HIV-1 Reverse Transcriptase 1991 , 1-19	
5	Mammalian DNA Repair and the Cellular DNA Polymerases 1998 , 161-180	
4	Understanding base lesion DNA repair (477.2). FASEB Journal, 2014, 28, 477.2	0.9
		0.9
4	Understanding base lesion DNA repair (477.2). <i>FASEB Journal</i> , 2014 , 28, 477.2 NMR study of the effect of Zn on conformational activation of rat DNA polymerase []FASEB	