
Rui Manuel Tavares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3210417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Olive Fungal Epiphytic Communities Are Affected by Their Maturation Stage. Microorganisms, 2022, 10, 376.	3.6	5
2	Phylogenetic analysis and genetic diversity of the xylariaceous ascomycete BiscogniauxiaÂmediterranea from cork oak forests in different bioclimates. Scientific Reports, 2022, 12, 2646.	3.3	3
3	SUMO E3 ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis. Plant Physiology, 2022, 189, 934-954.	4.8	8
4	The influence of bioclimate on soil microbial communities of cork oak. BMC Microbiology, 2022, 22, .	3.3	10
5	Bacteria could help ectomycorrhizae establishment under climate variations. Mycorrhiza, 2021, 31, 395-401.	2.8	7
6	Illuminating Olea europaea L. endophyte fungal community. Microbiological Research, 2021, 245, 126693.	5.3	22
7	Cork Oak Forests Soil Bacteria: Potential for Sustainable Agroforest Production. Microorganisms, 2021, 9, 1973.	3.6	5
8	Cork Oak Endophytic Fungi as Potential Biocontrol Agents against Biscogniauxia mediterranea and Diplodia corticola. Journal of Fungi (Basel, Switzerland), 2020, 6, 287.	3.5	12
9	The Influence of Endophytes on Cork Oak Forests Under a Changing Climate. , 2019, , 250-274.		1
10	Climatic impacts on the bacterial community profiles of cork oak soils. Applied Soil Ecology, 2019, 143, 89-97.	4.3	15
11	Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes. Mycorrhiza, 2018, 28, 357-368.	2.8	19
12	Sugar signaling regulation by arabidopsis SIZ1-driven sumoylation is independent of salicylic acid. Plant Signaling and Behavior, 2018, 13, e1179417.	2.4	7
13	Arabidopsis thaliana SPF1 and SPF2 are nuclear-located ULP2-like SUMO proteases that act downstream of SIZ1 in plant development. Journal of Experimental Botany, 2018, 69, 4633-4649.	4.8	25
14	Mycorrhization of Fagaceae Forests Within Mediterranean Ecosystems. , 2017, , 75-97.		3
15	Fungal community in chestnut orchards with different Hypholoma fasciculare aboveground abundance: potential implications for sustainable production. Revista De Ciências Agrárias, 2017, 40, 124-132.	0.2	2
16	Bioinformatics Tools for Exploring the SUMO Gene Network. Methods in Molecular Biology, 2016, 1450, 285-301.	0.9	3
17	SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. Plant Molecular Biology, 2016, 92, 143-159.	3.9	39
18	Soil <scp>DNA</scp> pyrosequencing and fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards. Environmental Microbiology Reports, 2015, 7, 946-954.	2.4	26

Rui Manuel Tavares

#	Article	IF	CITATIONS
19	Arabidopsis Squalene Epoxidase 3 (SQE3) Complements SQE1 and Is Important for Embryo Development and Bulk Squalene Epoxidase Activity. Molecular Plant, 2015, 8, 1090-1102.	8.3	59
20	SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2015, 56, 2297-2311.	3.1	44
21	RNA-Seq and Gene Network Analysis Uncover Activation of an ABA-Dependent Signalosome During the Cork Oak Root Response to Drought. Frontiers in Plant Science, 2015, 6, 1195.	3.6	30
22	A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing. BMC Genomics, 2014, 15, 371.	2.8	53
23	Impact of carbon and phosphate starvation on growth and programmed cell death of maritime pine suspension cells. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 478-486.	2.1	5
24	Phenotypic analysis of the Arabidopsis heat stress response during germination and early seedling development. Plant Methods, 2014, 10, 7.	4.3	76
25	Oak Root Response to Ectomycorrhizal Symbiosis Establishment: RNA-Seq Derived Transcript Identification and Expression Profiling. PLoS ONE, 2014, 9, e98376.	2.5	45
26	The <i>SUD1</i> Gene Encodes a Putative E3 Ubiquitin Ligase and Is a Positive Regulator of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in <i>Arabidopsis</i> Å Â. Plant Cell, 2013, 25, 728-743.	6.6	78
27	A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiological Research, 2013, 168, 1-5.	5.3	26
28	SUMO, a heavyweight player in plant abiotic stress responses. Cellular and Molecular Life Sciences, 2012, 69, 3269-3283.	5.4	118
29	Effect of competitive interactions between ectomycorrhizal and saprotrophic fungi on Castanea sativa performance. Mycorrhiza, 2012, 22, 41-49.	2.8	17
30	Signaling in Ectomycorrhizal Symbiosis Establishment. Soil Biology, 2011, , 157-175.	0.8	3
31	A Strategy for the Identification of New Abiotic Stress Determinants inArabidopsisUsing Web-Based Data Mining and Reverse Genetics. OMICS A Journal of Integrative Biology, 2011, 15, 935-947.	2.0	6
32	Role of Tonoplast Proton Pumps and Na+/H+ Antiport System in Salt Tolerance of Populus euphratica Oliv Journal of Plant Growth Regulation, 2010, 29, 23-34.	5.1	46
33	Analysis on the Role of Phenylpropanoid Metabolism in the <i>Pinus pinaster-Botrytis cinerea</i> Interaction. Journal of Phytopathology, 2010, 158, 641.	1.0	4
34	Diversity and fruiting pattern of macrofungi associated with chestnut (Castanea sativa) in the Trás-os-Montes region (Northeast Portugal). Fungal Ecology, 2010, 3, 9-19.	1.6	51
35	Effect of salt on ROS homeostasis, lipid peroxidation and antioxidant mechanisms in Pinus pinaster suspension cells. Annals of Forest Science, 2009, 66, 211-211.	2.0	11
36	Establishment and characterization of Pinus pinaster suspension cell cultures. Plant Cell, Tissue and Organ Culture, 2008, 93, 115-121.	2.3	14

Rui Manuel Tavares

#	Article	IF	CITATIONS
37	The Necrotroph Botrytis cinerea Induces a Non-Host Type II Resistance Mechanism in Pinus pinaster Suspension-Cultured Cells. Plant and Cell Physiology, 2008, 49, 386-395.	3.1	16
38	Phosphate transport by proteoid roots of Hakea sericea. Plant Science, 2007, 173, 550-558.	3.6	23
39	An Hg-sensitive channel mediates the diffusional component of glucose transport in olive cells. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2801-2811.	2.6	25
40	Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza, 2007, 17, 185-193.	2.8	76
41	Utilization and Transport of Mannitol in Olea europaea and Implications for Salt Stress Tolerance. Plant and Cell Physiology, 2006, 48, 42-53.	3.1	79
42	Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry, 2006, 67, 149-155.	2.9	87
43	The Non-host Pathogen Botrytis cinerea Enhances Glucose Transport in Pinus pinaster Suspension-cultured Cells. Plant and Cell Physiology, 2006, 47, 290-298.	3.1	21
44	Pathways of Glucose Regulation of Monosaccharide Transport in Grape Cells. Plant Physiology, 2006, 141, 1563-1577.	4.8	95
45	EFFECT OF SOIL TILLAGE ON DIVERSITY AND ABUNDANCE OF MACROFUNGI ASSOCIATED WITH CHESTNUT TREE IN THE NORTHEAST OF PORTUGAL. Acta Horticulturae, 2005, , 685-690.	0.2	1
46	First report of Hakea sericea leaf infection caused by Pestalotiopsis funerea in Portugal. Plant Pathology, 2004, 53, 535-535.	2.4	13
47	Identification of Zantedeschia aethiopica Cat1 and Cat2 catalase genes and their expression analysis during spathe senescence and regreening. Plant Science, 2004, 167, 889-898.	3.6	9
48	Salicylic acid up-regulates the expression of chloroplastic Cu, Zn-superoxide dismutase in needles of maritime pine (Pinus pinaster Ait.). Annals of Forest Science, 2004, 61, 847-850.	2.0	6
49	An improved method for high-quality RNA isolation from needles of adult maritime pine trees. Plant Molecular Biology Reporter, 2003, 21, 333-338.	1.8	86
50	Utilization and Transport of Glucose in Olea Europaea Cell Suspensions. Plant and Cell Physiology, 2002, 43, 1510-1517.	3.1	28
51	Production and Characterization of a Specific Rubisco Monoclonal Antibody, and Its Use in Rubisco Quantification During <i>Zantedeschia aethiopica</i> Spathe Development. Hybridoma, 1999, 18, 203-209.	0.6	3
52	Thylakoid membrane reorganization during zantedeschia aethiopica spathe regreening: consequence of the absence of Δ3-trans-hexadecenoic acid in photochemical activity. Phytochemistry, 1998, 47, 979-984.	2.9	5
53	Lipid composition of thylakoid membranes from leaves and regreened spathes of Zantedeschia aethiopica. Phytochemistry, 1995, 40, 1367-1371.	2.9	18