Chul B Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3210357/publications.pdf

Version: 2024-02-01

353 papers 23,820 citations

82 h-index 131 g-index

362 all docs 362 docs citations

362 times ranked

8712 citing authors

#	Article	IF	CITATIONS
1	A review on physical foaming of thermoplastic and vulcanized elastomers. Polymer Reviews, 2022, 62, 95-141.	10.9	66
2	Synthesis, structures and properties of hydrophobic Alkyltrimethoxysilane-Polyvinyltrimethoxysilane hybrid aerogels with different alkyl chain lengths. Journal of Colloid and Interface Science, 2022, 608, 720-734.	9.4	11
3	A comprehensive review of cell structure variation and general rules for polymer microcellular foams. Chemical Engineering Journal, 2022, 430, 132662.	12.7	60
4	A novel systematic multi-objective optimization to achieve high-efficiency and low-emission waste polymeric foam gasification using response surface methodology and TOPSIS method. Chemical Engineering Journal, 2022, 430, 132958.	12.7	57
5	Electrically and thermally graded microcellular polymer/graphene nanoplatelet composite foams and their EMI shielding properties. Carbon, 2022, 187, 153-164.	10.3	42
6	Carbon as a solution for nanocellular foam superinsulation. Carbon, 2022, 189, 319-338.	10.3	9
7	Fluorescence assisted visualization and destruction of particles embedded thin cell walls in polymeric foams via supercritical foaming. Journal of Supercritical Fluids, 2022, 181, 105511.	3.2	15
8	Ultra-fast degradable PBAT/PBS foams of high performance in compression and thermal insulation made from environment-friendly supercritical foaming. Journal of Supercritical Fluids, 2022, 181, 105512.	3.2	31
9	Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere, 2022, 292, 133102.	8.2	62
10	Recent Advances in Graphene-Based Polymer Nanocomposites and Foams for Electromagnetic Interference Shielding Applications. Industrial & Engineering Chemistry Research, 2022, 61, 1545-1568.	3.7	25
11	Tailoring nano-fibrillated polystyrene composite with enhanced fire retarding properties for foam applications. Materials and Design, 2022, 214, 110419.	7.0	13
12	Ultra-elastic and super-insulating biomass PEBA nanoporous foams achieved by combining in-situ fibrillation with microcellular foaming. Journal of CO2 Utilization, 2022, 57, 101891.	6.8	20
13	Ultra-ductile and strong in-situ fibrillated PLA/PTFE nanocomposites with outstanding heat resistance derived by CO2 treatment. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106849.	7.6	21
14	High-efficiency and low-pollutant waste polystyrene and waste polystyrene foam gasification: Comprehensive comparison analysis, multi-objective optimization and multi-criteria decision analysis. Fuel, 2022, 316, 123362.	6.4	29
15	Computational Optimizing the Electromagnetic Wave Reflectivity of Doubleâ€Layered Polymer Nanocomposites. Small Methods, 2022, 6, e2101510.	8.6	38
16	Molecular engineering of the surface of boron nitride nanotubes for manufacture of thermally conductive dielectric polymer composites. Applied Surface Science, 2022, 587, 152779.	6.1	11
17	Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultralow Reflection. Nano-Micro Letters, 2022, 14, 19.	27.0	76
18	Novel, flexible, and transparent thin film polyimide aerogels with enhanced thermal insulation and high service temperature. Journal of Materials Chemistry C, 2022, 10, 5088-5108.	5.5	35

#	Article	IF	CITATIONS
19	Using a Supercritical Fluid-Assisted Thin Cell Wall Stretching–Defoaming Method to Enhance the Nanofiller Dispersion, EMI Shielding, and Thermal Conduction Property of CNF/PVDF Nanocomposites. Industrial & Engineering Chemistry Research, 2022, 61, 3647-3659.	3.7	18
20	Cost-effective and reproducible technologies for fabrication of tissue engineered scaffolds: The state-of-the-art and future perspectives. Polymer, 2022, 244, 124681.	3.8	10
21	Generation of Tough, Stiff Polylactide Nanocomposites through the <i>In Situ</i> Nanofibrillation of Thermoplastic Elastomer. ACS Applied Materials & Elastomer. Elastomer. ACS Applied Materials & Elastomer. Elastom	8.0	20
22	Closely Packed Conductive Droplets with Polygon-Like Patterns Confined at the Interface in Ternary Polymer Blends. Langmuir, 2022, 38, 3189-3201.	3.5	0
23	Friction of Ti ₃ C ₂ T _{<i>x</i>} MXenes. Nano Letters, 2022, 22, 3356-3363.	9.1	46
24	Scalable production of crosslinked rubber nanofibre networks as highly efficient toughening agent for isotactic polypropylene: Toughening mechanism of Non-traditional anisotropic rubber inclusion. Chemical Engineering Journal, 2022, 438, 134060.	12.7	19
25	Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 117, 215-224.	10.7	28
26	Sectorization of Macromolecular Single Crystals Unveiled by Probing Shear Anisotropy. ACS Macro Letters, 2022, 11, 53-59.	4.8	0
27	Three-Dimensional Polymer Nanofiber Structures for Liquid Contamination Adsorption. ACS Applied Nano Materials, 2022, 5, 5640-5651.	5.0	8
28	Greatly Enhanced Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of Polyaniline-Grafted Ti ₃ C _{C_{T_{Ci>xNDF Composites. ACS Applied Materials & District Sub (100 Materials & 100 Mate}}}	8.0	31
29	Flexible Poly(ether-block-amide)/Carbon Nanotube Composites for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2022, 5, 7598-7608.	5.0	9
30	Microcellular foams simultaneous reinforcing and toughening strategy of combining nano-fibrillation network and supercritical solid-state foaming. Polymer, 2022, 252, 124928.	3.8	13
31	Construction of a Two-Dimensional Response Network in Three-Dimensional Composites to Dramatically Enhance Sensor Sensitivity: A Simple, Feasible, and Green Regulating Strategy. Industrial & Samp; Engineering Chemistry Research, 2022, 61, 8069-8080.	3.7	6
32	Structure-gradient thermoplastic polyurethane foams with enhanced resilience derived by microcellular foaming. Journal of Supercritical Fluids, 2022, 188, 105667.	3.2	15
33	Polylactic acid/UV-crosslinked in-situ ethylene-propylene-diene terpolymer nanofibril composites with outstanding mechanical and foaming performance. Chemical Engineering Journal, 2022, 447, 137509.	12.7	18
34	Graphene-Embedded Hybrid Network Structure to Render Olefin Block Copolymer Foams with High Compression Performance. Industrial & Engineering Chemistry Research, 2022, 61, 9735-9744.	3.7	8
35	Controlling stereocomplex crystal morphology in poly(lactide) through chain alignment. International Journal of Biological Macromolecules, 2022, 218, 22-32.	7. 5	10
36	Utilization of CO2 as a physical blowing agent for foaming of high temperature sulfone polymers. Journal of CO2 Utilization, 2022, 63, 102131.	6.8	7

#	Article	IF	CITATIONS
37	Non-isothermal crystallization kinetics of polypropylene/polytetrafluoroethylene fibrillated composites. Journal of Materials Science, 2021, 56, 3562-3575.	3.7	25
38	Structural Impact of Graphene Nanoribbon on Mechanical Properties and Anti-corrosion Performance of Polyurethane Nanocomposites. Chemical Engineering Journal, 2021, 405, 126858.	12.7	46
39	Synergetic effect of crystal nucleating agent and melt self-enhancement of isotactic polypropylene on its rheological and microcellular foaming properties. Journal of Cellular Plastics, 2021, 57, 101-121.	2.4	5
40	Percolation mechanism and effective conductivity of mechanically deformed 3-dimensional composite networks: Computational modeling and experimental verification. Composites Part B: Engineering, 2021, 207, 108552.	12.0	32
41	In situ visualization of crystal nucleation and growth behaviors of linear and long chain branched polypropylene under shear and CO2 pressure. Polymer, 2021, 213, 123215.	3.8	12
42	Enhanced electrical and mechanical properties of graphene nano-ribbon/thermoplastic polyurethane composites. Carbon, 2021, 174, 305-316.	10.3	38
43	Exploration of Polymer Calorimetric Glass Transition Phenomenology by Two-Dimensional Correlation Analysis. Macromolecules, 2021, 54, 473-487.	4.8	3
44	Nanocellular poly(ether- <i>block</i> -amide)/MWCNT nanocomposite films fabricated by stretching-assisted microcellular foaming for high-performance EMI shielding applications. Journal of Materials Chemistry C, 2021, 9, 1245-1258.	5.5	53
45	CVD carbon-coated carbonized loofah sponge loaded with a directionally arrayed MXene aerogel for electromagnetic interference shielding. Journal of Materials Chemistry A, 2021, 9, 358-370.	10.3	48
46	Nanofibrillated polymer systems: Design, application, and current state of the art. Progress in Polymer Science, 2021, 113, 101346.	24.7	47
47	Strong, highly hydrophobic, transparent, and super-insulative polyorganosiloxane-based aerogel. Chemical Engineering Journal, 2021, 413, 127488.	12.7	28
48	Recent progress in microâ€∤nanoâ€fibrillar reinforced polymeric composite foams. Polymer Engineering and Science, 2021, 61, 926-941.	3.1	35
49	Advances in electromagnetic shielding properties of composite foams. Journal of Materials Chemistry A, 2021, 9, 8896-8949.	10.3	184
50	Opportunities and challenges in microwave absorption of nickel–carbon composites. Physical Chemistry Chemical Physics, 2021, 23, 20795-20834.	2.8	29
51	LBfoam: An open-source software package for the simulation of foaming using the Lattice Boltzmann Method. Computer Physics Communications, 2021, 259, 107698.	7.5	11
52	An off-lattice model of the Sanchez-Lacombe Eq. of state for polymers with finite flexibility. Polymer, 2021, 215, 123334.	3.8	2
53	Hydrophobic Porous Polypropylene with Hierarchical Structures for Ultrafast and Highly Selective Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16859-16868.	8.0	53
54	Nanofiber fluorescence coating for evaluation of complex solid-/gas-multi-phase and nano-/micro-multi-scale nanocomposite foam structure. Progress in Organic Coatings, 2021, 154, 106183.	3.9	15

#	Article	IF	CITATIONS
55	Evaluation and modeling of electrical conductivity in conductive polymer nanocomposite foams with multiwalled carbon nanotube networks. Chemical Engineering Journal, 2021, 411, 128382.	12.7	59
56	Rheological and foaming behaviors of long-chain branched polyamide 6 with controlled branch length. Polymer, 2021, 224, 123730.	3.8	29
57	NPLIC: A machine learning approach to piecewise linear interface construction. Computers and Fluids, 2021, 223, 104950.	2.5	10
58	Microcellular injection molded outstanding oleophilic and sound-insulating PP/PTFE nanocomposite foam. Composites Part B: Engineering, 2021, 215, 108786.	12.0	40
59	3D fibrillated network of compatibilized linear low density polyethylene/polyamide with high melt strength and superior foamability. Polymer, 2021, 228, 123911.	3.8	10
60	Research on cellular morphology and mechanical properties of microcellular injection–molded BCPP and its blends. International Journal of Advanced Manufacturing Technology, 2021, 116, 2223-2241.	3.0	4
61	Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. Carbon, 2021, 179, 408-416.	10.3	66
62	Environmentally Friendly and Zero-Formamide EVA/LDPE Microcellular Foams via Supercritical Carbon Dioxide Solid Foaming. ACS Applied Polymer Materials, 2021, 3, 4213-4222.	4.4	38
63	LDPE/MWCNT and LDPE/MWCNT/UHMWPE self-reinforced fiber-composite foams prepared via supercritical CO2: A microstructure-engineering property perspective. Journal of Supercritical Fluids, 2021, 174, 105248.	3.2	17
64	Electrically percolated nanofibrillar composites with core-sheath structures from completely wet ternary polymer blends. Chemical Engineering Journal, 2021, 419, 129603.	12.7	5
65	Supercritical CO2 utilization for development of graded cellular structures in semicrystalline polymers. Journal of CO2 Utilization, 2021, 51, 101615.	6.8	12
66	Fabrication of outstanding thermal-insulating, mechanical robust and superhydrophobic PP/CNT/sorbitol derivative nanocomposite foams for efficient oil/water separation. Journal of Hazardous Materials, 2021, 418, 126295.	12.4	41
67	Synergistic Manipulation of Zero-Dimension and One-Dimension Hybrid Nanofillers in Multi-Layer Two-Dimension Thin Films to Construct Light Weight Electromagnetic Interference Material. Polymers, 2021, 13, 3278.	4.5	15
68	Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors. Energy, 2021, 233, 121140.	8.8	26
69	Maintaining electrical conductivity of microcellular MWCNT/TPU composites after deformation. Composites Part B: Engineering, 2021, 223, 109113.	12.0	23
70	Nanocellular TPU composite foams achieved by stretch-assisted microcellular foaming with low-pressure gaseous CO2 as blowing agent. Journal of CO2 Utilization, 2021, 53, 101708.	6.8	27
71	The critical requirement for high-pressure foam injection molding with supercritical fluid. Polymer, 2021, 238, 124388.	3.8	8
72	Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: Exploring the role of nanofibrillated stereocomplex polylactide crystals. International Journal of Biological Macromolecules, 2021, 193, 2210-2220.	7. 5	22

#	Article	IF	CITATIONS
73	The role of interface on the toughening and failure mechanisms of thermoplastic nanocomposites reinforced with nanofibrillated rubber. Nanoscale, 2021, 13, 20248-20280.	5.6	6
74	Lightweight and flexible graphene/SiC-nanowires/ poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon, 2020, 156, 58-66.	10.3	138
75	Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Advances in Colloid and Interface Science, 2020, 276, 102101.	14.7	99
76	Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. Journal of Materials Chemistry C, 2020, 8, 58-70.	5.5	120
77	Insights into in-situ sol-gel conversion in graphene modified polymer-based silica gels for multifunctional aerogels. Chemical Engineering Journal, 2020, 392, 123813.	12.7	27
78	Highly expanded, highly insulating polypropylene/polybutylene-terephthalate composite foams manufactured by nano-fibrillation technology. Materials and Design, 2020, 188, 108450.	7.0	39
79	Novel separator skimmer for oil spill cleanup and oily wastewater treatment: From conceptual system design to the first pilot-scale prototype development. Environmental Technology and Innovation, 2020, 18, 100598.	6.1	77
80	Enhancing the electrical conductivity of PP/CNT nanocomposites through crystal-induced volume exclusion effect with a slow cooling rate. Composites Part B: Engineering, 2020, 183, 107663.	12.0	67
81	Surface-engineered sponges for recovery of crude oil microdroplets from wastewater. Nature Sustainability, 2020, 3, 136-143.	23.7	94
82	Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor. Journal of Colloid and Interface Science, 2020, 561, 890-901.	9.4	37
83	Injection Molded Strong Polypropylene Composite Foam Reinforced with Rubber and Talc. Macromolecular Materials and Engineering, 2020, 305, 1900630.	3.6	24
84	Mechanically robust and thermally insulating polyarylene ether nitrile with a bone-like structure. Materials and Design, 2020, 196, 109099.	7.0	9
85	In situ oils/organic solvents cleanup and recovery using advanced oil-water separation system. Chemosphere, 2020, 260, 127586.	8.2	38
86	Promotion of Form l′ in the Polymorph Selection of Polybutene-1 during Crystallization under High Gas/Supercritical Fluid Pressure via Enhancing Chain Mobility. Macromolecules, 2020, 53, 10069-10077.	4.8	18
87	An Effective Design Strategy for the Sandwich Structure of PVDF/GNP-Ni-CNT Composites with Remarkable Electromagnetic Interference Shielding Effectiveness. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36568-36577.	8.0	112
88	Lightweight and tough PP/talc composite foam with bimodal nanoporous structure achieved by microcellular injection molding. Materials and Design, 2020, 195, 109051.	7.0	52
89	Highly Compressible Polymer Composite Foams with Thermal Heating-Boosted Electromagnetic Wave Absorption Abilities. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50793-50802.	8.0	47
90	Peculiar crystallization and viscoelastic properties of polylactide/polytetrafluoroethylene composites induced by in-situ formed 3D nanofiber network. Composites Part B: Engineering, 2020, 200, 108361.	12.0	29

#	Article	lF	CITATIONS
91	Foaming Behaviors and Mechanical Properties of Injection-Molded Polylactide/Cotton-Fiber Composites. Industrial & Engineering Chemistry Research, 2020, 59, 17885-17893.	3.7	9
92	Toughening mechanism of long chain branched polyamide 6. Materials and Design, 2020, 196, 109173.	7.0	24
93	Facilitating supercritical CO2 assisted exfoliation of graphene nanoplatelets with the polymer matrix. Chemical Engineering Journal, 2020, 394, 124930.	12.7	24
94	Wrong expectation of superinsulation behavior from largely-expanded nanocellular foams. Nanoscale, 2020, 12, 13064-13085.	5 . 6	32
95	PPDA-PMDA polyimide aerogels with tailored nanostructure assembly for air filtering applications. Separation and Purification Technology, 2020, 250, 117279.	7.9	26
96	Polyimide aerogels with novel bimodal micro and nano porous structure assembly for airborne nano filtering applications. RSC Advances, 2020, 10, 22909-22920.	3.6	28
97	Theoretical modeling and experimental verification of percolation threshold with MWCNTs' rotation and translation around a growing bubble in conductive polymer composite foams. Composites Science and Technology, 2020, 199, 108345.	7.8	38
98	Double Dianhydride Backbone Polyimide Aerogels with Enhanced Thermal Insulation for Highâ€Temperature Applications. Macromolecular Materials and Engineering, 2020, 305, 1900777.	3.6	35
99	The conductivity of polydimethylsiloxane/graphene nano-ribbon foam composite with elongation. Carbon, 2020, 162, 328-338.	10.3	19
100	Strong and super thermally insulating in-situ nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding. Chemical Engineering Journal, 2020, 390, 124520.	12.7	103
101	Ultra-lightweight, super thermal-insulation and strong PP/CNT microcellular foams. Composites Science and Technology, 2020, 191, 108084.	7.8	97
102	Improved cell nucleating effect of partially melted crystal structure to enhance the microcellular foaming and impact properties of isotactic polypropylene. Journal of Supercritical Fluids, 2020, 160, 104794.	3.2	25
103	In Situ Interface Design in Graphene-Embedded Polymeric Silica Aerogel with Organic/Inorganic Hybridization. ACS Applied Materials & Interfaces, 2020, 12, 26635-26648.	8.0	31
104	Enhancing the mechanical performance of PA6 based composites by altering their crystallization and rheological behavior via in-situ generated PPS nanofibrils. Composites Part B: Engineering, 2020, 195, 108067.	12.0	50
105	Highly expanded fine-cell foam of polylactide/polyhydroxyalkanoate/nano-fibrillated polytetrafluoroethylene composites blown with mold-opening injection molding. International Journal of Biological Macromolecules, 2020, 155, 286-292.	7.5	33
106	Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. Journal of Materials Chemistry C, 2020, 8, 7401-7410.	5 . 5	70
107	A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss. Journal of Materials Chemistry A, 2019, 7, 133-140.	10.3	111
108	Accurate theoretical modeling of cell growth by comparing with visualized data in high-pressure foam injection molding. European Polymer Journal, 2019, 119, 189-199.	5.4	18

#	Article	IF	Citations
109	Effect of branching on flow-induced crystallization of poly (lactic acid). European Polymer Journal, 2019, 119, 410-420.	5.4	31
110	Lightweight and strong fibrillary PTFE reinforced polypropylene composite foams fabricated by foam injection molding. European Polymer Journal, 2019, 119, 22-31.	5.4	65
111	Preparation and characterization of high melt strength thermoplastic polyester elastomer with different topological structure using a two-step functional group reaction. Polymer, 2019, 179, 121628.	3.8	47
112	Multi-dimensional analysis of micro-/nano-polymeric foams by confocal laser scanning microscopy and foam simulations. Chemical Engineering Science, 2019, 207, 892-902.	3.8	24
113	Effects of polymer-filler interactions on controlling the conductive network formation in polyamide 6/multi-Walled carbon nanotube composites. Polymer, 2019, 178, 121684.	3.8	40
114	Foam Injection Molding of Conductive-Filler/Polymer Composites. , 2019, , 115-148.		0
115	rGO/Fe ₃ O ₄ hybrid induced ultra-efficient EMI shielding performance of phenolic-based carbon foam. RSC Advances, 2019, 9, 20643-20651.	3.6	41
116	Insight into the Directional Thermal Transport of Hexagonal Boron Nitride Composites. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41726-41735.	8.0	33
117	Challenge in manufacturing nanofibril composites with low matrix viscosity: Effects of matrix viscosity and fibril content. European Polymer Journal, 2019, 121, 109310.	5.4	30
118	Thermally conductive polymer-graphene nanoplatelet composite foams. AIP Conference Proceedings, 2019, , .	0.4	1
119	Extensional Flow Resistance of 3D Fiber Networks in Plasticized Nanocomposites. Macromolecules, 2019, 52, 6467-6473.	4.8	15
120	Solubility and diffusivity of CO2 and N2 in TPU and their effects on cell nucleation in batch foaming. Journal of Supercritical Fluids, 2019, 154, 104623.	3.2	53
121	Numerical analysis of the effect of the local variation of viscosity on bubble growth and deformation in polymer foaming. Journal of Rheology, 2019, 63, 895-903.	2.6	17
122	Determination of modified polyamide 6's foaming windows by bubble growth simulations based on rheological measurements. Journal of Applied Polymer Science, 2019, 136, 48138.	2.6	26
123	Structure to properties relations of BPDA and PMDA backbone hybrid diamine polyimide aerogels. Polymer, 2019, 176, 213-226.	3.8	54
124	The Effect of Foaming on the Properties of Carbon Nanotubes/Polymer Composites. , 2019, , 235-254.		0
125	Preparation of Thermoplastic Polyurethane (TPU) Perforated Membrane via CO2 Foaming and Its Particle Separation Performance. Polymers, 2019, 11, 847.	4.5	21
126	Robust, ultra-insulative and transparent polyethylene-based hybrid silica aerogel with a novel non-particulate structure. Journal of Colloid and Interface Science, 2019, 548, 206-216.	9.4	25

#	Article	IF	Citations
127	The effect of graphene-nanoplatelets on gelation and structural integrity of a polyvinyltrimethoxysilane-based aerogel. RSC Advances, 2019, 9, 11503-11520.	3.6	39
128	Structure-tunable thermoplastic polyurethane foams fabricated by supercritical carbon dioxide foaming and their compressive mechanical properties. Journal of Supercritical Fluids, 2019, 149, 127-137.	3.2	73
129	Effect of chain topological structure on the crystallization, rheological behavior and foamability of TPEE using supercritical CO2 as a blowing agent. Journal of Supercritical Fluids, 2019, 147, 48-58.	3.2	40
130	Bio-inspired polyethylene-based composite reinforced by thermoplastic polyurethane (TPU) fiber for aerogel production. AIP Conference Proceedings, 2019, , .	0.4	4
131	Improving the Continuous Microcellular Extrusion Foaming Ability with Supercritical CO2 of Thermoplastic Polyether Ester Elastomer through In-Situ Fibrillation of Polytetrafluoroethylene. Polymers, 2019, 11, 1983.	4.5	20
132	Investigation of the mold-filling phenomenon in high-pressure foam injection molding and its effects on the cellular structure in expanded foams. Polymer, 2019, 160, 43-52.	3.8	34
133	Poly(vinylidene fluoride) foams: a promising low- <i>k</i> Journal of Materials Chemistry C, 2018, 6, 3065-3073.	5.5	110
134	Lightweight, super-elastic, and thermal-sound insulation bio-based PEBA foams fabricated by high-pressure foam injection molding with mold-opening. European Polymer Journal, 2018, 103, 68-79.	5.4	120
135	Effects of Compressed CO ₂ and Cotton Fibers on the Crystallization and Foaming Behaviors of Polylactide. Industrial & Engineering Chemistry Research, 2018, 57, 2094-2104.	3.7	29
136	Non-crosslinked thermoplastic reticulated polymer foams from crystallization-induced structural heterogeneities. Polymer, 2018, 135, 185-192.	3.8	46
137	Reinforced resorcinol formaldehyde aerogel with Co-assembled polyacrylonitrile nanofibers and graphene oxide nanosheets. Materials and Design, 2018, 151, 154-163.	7.0	24
138	Environmentally Friendly Polylactic Acid-Based Thermal Insulation Foams Blown with Supercritical CO ₂ . Industrial & Engineering Chemistry Research, 2018, 57, 5464-5471.	3.7	49
139	Foaming behavior of microcellular poly(lactic acid)/TPU composites in supercritical CO ₂ . Journal of Thermoplastic Composite Materials, 2018, 31, 61-78.	4.2	26
140	Highly stretchable conductive thermoplastic vulcanizate/carbon nanotube nanocomposites with segregated structure, low percolation threshold and improved cyclic electromechanical performance. Journal of Materials Chemistry C, 2018, 6, 350-359.	5.5	48
141	Ultralow-Threshold and Lightweight Biodegradable Porous PLA/MWCNT with Segregated Conductive Networks for High-Performance Thermal Insulation and Electromagnetic Interference Shielding Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1195-1203.	8.0	241
142	Enhanced Thermal Conductivity of Graphene Nanoplatelet–Polymer Nanocomposites Fabricated via Supercritical Fluid-Assisted in Situ Exfoliation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1225-1236.	8.0	114
143	Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers. European Polymer Journal, 2018, 98, 1-10.	5.4	117
144	Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon, 2018, 127, 469-478.	10.3	169

#	Article	IF	CITATIONS
145	Modification of iPP microcellular foaming behavior by thermal history control and nucleating agent at compressed CO2. Journal of Supercritical Fluids, 2018, 133, 383-392.	3.2	31
146	Lightweight, thermally insulating, and low dielectric microcellular high-impact polystyrene (HIPS) foams fabricated by high-pressure foam injection molding with mold opening. Journal of Materials Chemistry C, 2018, 6, 12294-12305.	5 . 5	55
147	Scalable Fabrication of Thermally Insulating Mechanically Resilient Hierarchically Porous Polymer Foams. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38410-38417.	8.0	74
148	Broadened foaming scope of iPP adjusted by its self-enhancement and nucleating agent under compressed CO2. Materials Today Communications, 2018, 17, 501-510.	1.9	11
149	Lightweight and strong microcellular injection molded PP/talc nanocomposite. Composites Science and Technology, 2018, 168, 38-46.	7.8	89
150	Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. Journal of Materials Chemistry C, 2018, 6, 10292-10300.	5 . 5	165
151	Lightweight and tough nanocellular PP/PTFE nanocomposite foams with defect-free surfaces obtained using in situ nanofibrillation and nanocellular injection molding. Chemical Engineering Journal, 2018, 350, 1-11.	12.7	154
152	Nanostructure to thermal property relationship of resorcinol formaldehyde aerogels using the fractal technique. Nanoscale, 2018, 10, 10564-10575.	5 . 6	34
153	Application of a constant hole volume Sanchez–Lacombe equation of state to mixtures relevant to polymeric foaming. Soft Matter, 2018, 14, 4603-4614.	2.7	16
154	Facile production of biodegradable PCL/PLA in situ nanofibrillar composites with unprecedented compatibility between the blend components. Chemical Engineering Journal, 2018, 351, 976-984.	12.7	88
155	Modelling of Rod-Like Fillers' Rotation and Translation near Two Growing Cells in Conductive Polymer Composite Foam Processing. Polymers, 2018, 10, 261.	4.5	26
156	Ultralight Microcellular Polymer–Graphene Nanoplatelet Foams with Enhanced Dielectric Performance. ACS Applied Materials & Interfaces, 2018, 10, 19987-19998.	8.0	79
157	Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer–Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming. ACS Applied Materials & Interfaces, 2018, 10, 30752-30761.	8.0	156
158	Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. Journal of Materials Chemistry C, 2018, 6, 6847-6859.	5 . 5	136
159	Evaluating Characteristic Parameters for Carbon Dioxide in the Sanchez–Lacombe Equation of State. Journal of Chemical & Engineering Data, 2017, 62, 585-595.	1.9	9
160	Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams. Composites Part A: Applied Science and Manufacturing, 2017, 96, 28-36.	7.6	80
161	Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology. Polymer, 2017, 112, 208-218.	3.8	59
162	Characterization of hard-segment crystalline phase of poly(ether- block -amide) (PEBAX \hat{A}^{\otimes}) thermoplastic elastomers in the presence of supercritical CO 2 and its impact on foams. Polymer, 2017, 114, 15-27.	3.8	60

#	Article	IF	Citations
163	Introduction of a long-chain branching structure by ultraviolet-induced reactive extrusion to improve cell morphology and processing properties of polylactide foam. RSC Advances, 2017, 7, 6266-6277.	3.6	42
164	Transition from microcellular to nanocellular PLA foams by controlling viscosity, branching and crystallization. European Polymer Journal, 2017, 91, 283-296.	5.4	64
165	Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms. Polymer, 2017, 119, 28-39.	3.8	91
166	Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation. Carbon, 2017, 120, 1-10.	10.3	124
167	Study of the foaming mechanisms associated with gas counter pressure and mold opening using the pressure profiles. Chemical Engineering Science, 2017, 167, 105-119.	3.8	26
168	Effect of Boric Acid on the Foaming Properties and Cell Structure of Poly(vinyl alcohol) Foam Prepared by Supercritical-CO ₂ Thermoplastic Extrusion Foaming. Industrial & Engineering Chemistry Research, 2017, 56, 6655-6663.	3.7	42
169	Ultra-tough and super thermal-insulation nanocellular PMMA/TPU. Chemical Engineering Journal, 2017, 325, 632-646.	12.7	165
170	High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Materials and Design, 2017, 131, 1-11.	7.0	161
171	Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene) Tj ETQq1 1 0.784	314 rgBT 8.0gBT	/Oyerlock 10
172	Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material. Nanoscale, 2017, 9, 5996-6009.	5.6	124
173	Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies. European Polymer Journal, 2017, 90, 231-244.	5.4	147
174	Fiber-spun polypropylene/polyethylene terephthalate microfibrillar composites with enhanced tensile and rheological properties and foaming ability. Polymer, 2017, 110, 139-148.	3.8	103
175	In-situ visualization of PLA crystallization and crystal effects on foaming in extrusion. European Polymer Journal, 2017, 96, 505-519.	5.4	35
176	Conductive network formation and destruction in polypropylene/carbon nanotube composites via crystal control using supercritical carbon dioxide. Polymer, 2017, 129, 179-188.	3.8	53
177	Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties. European Polymer Journal, 2017, 95, 382-393.	5.4	136
178	Steam-chest molding of expanded thermoplastic polyurethane bead foams and their mechanical properties. Chemical Engineering Science, 2017, 174, 337-346.	3.8	61
179	Chain extension of polyamide 6 using multifunctional chain extenders and reactive extrusion for melt foaming. European Polymer Journal, 2017, 96, 210-220.	5.4	49
180	CO2 -induced crystal engineering of polylactide and the development of a polymeric nacreous microstructure. Polymer International, 2017, 66, 1587-1597.	3.1	4

#	Article	IF	CITATIONS
181	Polymeric Foaming Predictions from the Sanchez-Lacombe Equation of State: Application to Polypropylene-Carbon Dioxide Mixtures. Physical Review Applied, 2017, 8, .	3.8	11
182	Visualization of polypropylene's strain-induced crystallization under the influence of supercritical CO2 in extrusion. Polymer, 2017, 122, 312-322.	3.8	21
183	Acid–Base Polymeric Foams for the Adsorption of Micro-oil Droplets from Industrial Effluents. Environmental Science & Technology, 2017, 51, 8552-8560.	10.0	57
184	Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging. Chemical Engineering Journal, 2017, 327, 1151-1162.	12.7	112
185	Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. Journal of Materials Chemistry C, 2017, 5, 6954-6961.	5.5	139
186	CO ₂ â€induced crystallization of polylactide and its selfâ€templating â€~stack of coins' crystalline microstructure. Polymer Engineering and Science, 2017, 57, 365-373.	3.1	4
187	Development of high-porosity resorcinol formaldehyde aerogels with enhanced mechanical properties through improved particle necking under CO 2 supercritical conditions. Journal of Colloid and Interface Science, 2017, 485, 65-74.	9.4	49
188	Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chemical Engineering Journal, 2017, 308, 772-782.	12.7	123
189	High-Pressure Preform Foam Blow Molding. International Polymer Processing, 2017, 32, 637-647.	0.5	3
190	Effect of the melt compressibility and the pressure drop rate on the cell-nucleation behavior in foam injection molding with mold opening. European Polymer Journal, 2017, 92, 314-325.	5.4	45
191	Experimental observation and modeling of fiber rotation and translation during foam injection molding of polymer composites. Composites Part A: Applied Science and Manufacturing, 2016, 88, 67-74.	7.6	51
192	Dimethyl ether's plasticizing effect on carbon dioxide solubility in polystyrene. Polymer, 2016, 97, 95-103.	3.8	26
193	Effect of foam processing parameters on bubble nucleation and growth dynamics in high-pressure foam injection molding. Chemical Engineering Science, 2016, 155, 27-37.	3.8	53
194	Visualization of polypropylene crystallites formed from a stressed melt in extrusion. Polymer, 2016, 101, 48-58.	3.8	15
195	Visualization for measuring the PVT property of viscoelastic polystyrene/CO2 mixtures at elevated temperatures and pressures. Polymer Testing, 2016, 55, 88-96.	4.8	5
196	From micro/nano structured isotactic polypropylene to a multifunctional low-density nanoporous medium. RSC Advances, 2016, 6, 108056-108066.	3.6	12
197	Towards the development of uniform closed cell nanocomposite foams using natural rubber containing pristine and organo-modified nanoclays. RSC Advances, 2016, 6, 53981-53990.	3.6	22
198	Effect of well-dispersed surface-modified silica nanoparticles on crystallization behavior of poly (lactic acid) under compressed carbon dioxide. Polymer, 2016, 98, 100-109.	3.8	29

#	Article	IF	Citations
199	Estimation of the foaming temperature of mold-opening foam injection molding process. Journal of Cellular Plastics, 2016, 52, 619-641.	2.4	21
200	Study of the bubble nucleation and growth mechanisms in high-pressure foam injection molding through in-situ visualization. European Polymer Journal, 2016, 76, 2-13.	5.4	65
201	Fabrication and Characterization of Closed-Cell Rubber Foams Based on Natural Rubber/Carbon Black by One-Step Foam Processing. Industrial & Engineering Chemistry Research, 2016, 55, 2407-2416.	3.7	60
202	Effect of Unexpected CO ₂ 's Phase Transition on the High-Pressure Differential Scanning Calorimetry Performance of Various Polymers. ACS Sustainable Chemistry and Engineering, 2016, 4, 1810-1818.	6.7	69
203	Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Composites Part A: Applied Science and Manufacturing, 2016, 83, 130-139.	7.6	129
204	Effects of uniaxial and biaxial orientation on fiber percolation in conductive polymer composites. AIP Conference Proceedings, 2015, , .	0.4	8
205	Batch foaming poly(vinyl alcohol)/microfibrillated cellulose composites with <scp>CO</scp> ₂ and water as coâ€blowing agents. Journal of Applied Polymer Science, 2015, 132, .	2.6	16
206	Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams. European Polymer Journal, 2015, 73, 455-465.	5.4	73
207	The effects of viscoelastic properties on the cellular morphology of silicone rubber foams generated by supercritical carbon dioxide. RSC Advances, 2015, 5, 106981-106988.	3.6	53
208	A semi-empirical model relating micro structure to acoustic properties of bimodal porous material. Journal of Applied Physics, 2015, 117 , .	2.5	11
209	Characterization of the Structure, Acoustic Property, Thermal Conductivity, and Mechanical Property of Highly Expanded Openâ€Cell Polycarbonate Foams. Macromolecular Materials and Engineering, 2015, 300, 48-56.	3.6	63
210	Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams. Carbon, 2015, 93, 819-829.	10.3	158
211	A novel technology to manufacture biodegradable polylactide bead foam products. Materials and Design, 2015, 83, 413-421.	7.0	101
212	Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils. Polymer, 2015, 68, 83-91.	3.8	80
213	Development of polylactide bead foams with double crystal melting peaks. Polymer, 2015, 69, 83-94.	3.8	142
214	Study of volume swelling and interfacial tension of the polystyrene–carbon dioxide–dimethyl ether system. Journal of Colloid and Interface Science, 2015, 456, 174-181.	9.4	13
215	A Polymer Visualization System with Accurate Heating and Cooling Control and High-Speed Imaging. International Journal of Molecular Sciences, 2015, 16, 9196-9216.	4.1	12
216	Adsorption of Surface-Modified Silica Nanoparticles to the Interface of Melt Poly(lactic acid) and Supercritical Carbon Dioxide. Langmuir, 2015, 31, 5571-5579.	3.5	22

#	Article	IF	Citations
217	A facile method to increase the charge storage capability of polymer nanocomposites. Nano Energy, 2015, 15, 54-65.	16.0	108
218	Effect of pressure and temperature on interfacial tension of poly lactic acid melt in supercritical carbon dioxide. Thermochimica Acta, 2015, 609, 1-6.	2.7	22
219	Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of CO2. European Polymer Journal, 2015, 71, 231-247.	5.4	51
220	Foaming of reactively modified polypropylene: Effects of rheology and coagent type. Journal of Cellular Plastics, 2015, 51, 505-522.	2.4	22
221	Rheology, thermal properties, and foaming behavior of high <scp>d</scp> -content polylactic acid/cellulose nanofiber composites. RSC Advances, 2015, 5, 91544-91557.	3.6	60
222	Poly(lactic acid)-Based in Situ Microfibrillar Composites with Enhanced Crystallization Kinetics, Mechanical Properties, Rheological Behavior, and Foaming Ability. Biomacromolecules, 2015, 16, 3925-3935.	5.4	157
223	Past and present developments in polymer bead foams and bead foaming technology. Polymer, 2015, 56, 5-19.	3.8	189
224	Design and development of novel bio-based functionally graded foams for enhanced acoustic capabilities. Journal of Materials Science, 2015, 50, 1248-1256.	3.7	74
225	A numerical scheme for investigating the effect of bimodal structure on acoustic behavior of polylactide foams. Applied Acoustics, 2015, 88, 75-83.	3.3	27
226	Rheological and foaming behavior of linear and branched polylactides. Rheologica Acta, 2014, 53, 779-790.	2.4	81
227	Development of polylactide openâ€cell foams with bimodal structure for highâ€acoustic absorption. Journal of Applied Polymer Science, 2014, 131, .	2.6	43
228	Effects of Nanoclay and CO ₂ Content on Foaming Behaviors of PP/PS Alloys. Advanced Materials Research, 2014, 898, 107-110.	0.3	0
229	Simha-Somcynsky Equation of State Modeling of the PVT Behavior of PP/Clay-Nanocomposite/CO2 Mixtures. International Polymer Processing, 2014, 29, 430-439.	0.5	0
230	Effect of biopolymer blends on physical and Acoustical properties of biocomposite foams. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1002-1013.	2.1	17
231	Superhydrophobic and Oleophilic Open-Cell Foams from Fibrillar Blends of Polypropylene and Polytetrafluoroethylene. ACS Applied Materials & Interfaces, 2014, 6, 21131-21140.	8.0	145
232	The interfacial tension of molten polylactide in supercritical carbon dioxide. Journal of Chemical Thermodynamics, 2014, 75, 69-76.	2.0	27
233	Determination of carbon dioxide solubility in polylactide acid with accurate PVT properties. Journal of Chemical Thermodynamics, 2014, 70, 13-23.	2.0	64
234	Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties. Composites Science and Technology, 2014, 90, 88-95.	7.8	155

#	Article	IF	Citations
235	Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold. Carbon, 2014, 71, 206-217.	10.3	361
236	Poly (lactic acid) foaming. Progress in Polymer Science, 2014, 39, 1721-1741.	24.7	401
237	In-situ visualization of polypropylene crystallization during extrusion. Polymer Testing, 2014, 33, 57-63.	4.8	25
238	Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer, 2014, 55, 4077-4090.	3.8	155
239	Dispersed polypropylene fibrils improve the foaming ability of a polyethylene matrix. Polymer, 2014, 55, 4199-4205.	3.8	83
240	The Thermal Behavior of Polylactide with Different <scp>D</scp> â€Lactide Content in the Presence of Dissolved CO ₂ . Macromolecular Materials and Engineering, 2014, 299, 1232-1239.	3.6	45
241	Foaming Poly(vinyl alcohol)/Microfibrillated Cellulose Composites with CO ₂ and Water as Co-blowing Agents. Industrial & Engineering Chemistry Research, 2014, 53, 11962-11972.	3.7	59
242	Poly(lactic acid) stereocomplex formation: Application to PLA rheological property modification. Journal of Applied Polymer Science, 2014, 131, .	2.6	27
243	Lightweight Polypropylene/Stainless-Steel Fiber Composite Foams with Low Percolation for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2014, 6, 11091-11100.	8.0	295
244	The synergy of supercritical CO2 and supercritical N2 in foaming of polystyrene for cell nucleation. Journal of Supercritical Fluids, 2014, 90, 35-43.	3.2	67
245	Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer, 2014, 55, 651-662.	3.8	94
246	Mechanisms of nanoclay-enhanced plastic foaming processes: effects of nanoclay intercalation and exfoliation. Journal of Nanoparticle Research, $2013,15,1.$	1.9	77
247	Effect of nucleation and plasticization on the stereocomplex formation between enantiomeric poly(lactic acid)s. Polymer, 2013, 54, 5762-5770.	3.8	44
248	Fundamental mechanisms of cell nucleation in polypropylene foaming with supercritical carbon dioxideâ€"Effects of extensional stresses and crystals. Journal of Supercritical Fluids, 2013, 79, 142-151.	3.2	174
249	Maximal cell density predictions for compressible polymer foams. Polymer, 2013, 54, 841-845.	3.8	26
250	Critical processing parameters for foamed bead manufacturing in a lab-scale autoclave system. Chemical Engineering Journal, 2013, 214, 180-188.	12.7	82
251	Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He. Polymer, 2013, 54, 6471-6478.	3.8	85
252	Crystallization and foaming of coagent-modified polypropylene: Nucleation effects of cross-linked nanoparticles. Polymer, 2013, 54, 4814-4819.	3.8	34

#	Article	IF	Citations
253	In situ fibrillation of CO2-philic polymers: Sustainable route to polymer foams in a continuous process. Polymer, 2013, 54, 4645-4652.	3.8	118
254	Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon, 2013, 60, 379-391.	10.3	484
255	Effects of nano-/micro-sized additives on the crystallization behaviors of PLA andÂPLA/CO2 mixtures. Polymer, 2013, 54, 2382-2391.	3.8	150
256	Characterization of Expanded Polypropylene Bead Foams with Modified Steam-Chest Molding. Industrial & Engineering Chemistry Research, 2013, 52, 8236-8247.	3.7	46
257	Double Crystal Melting Peak Generation for Expanded Polypropylene Bead Foam Manufacturing. Industrial & Samp; Engineering Chemistry Research, 2013, 52, 2297-2303.	3.7	113
258	Effect of extrusion conditions on the surface quality, mechanical properties, and morphology of cellular wood flour/high-density polyethylene composite profiles. Journal of Thermoplastic Composite Materials, 2013, 26, 1127-1144.	4.2	5
259	The Effects of Annealing on the Crystallinity of Polylactide Foams. Applied Mechanics and Materials, 2013, 295-298, 378-381.	0.2	0
260	Processing and characterization of solid and foamed injection-molded polylactide with talc. Journal of Cellular Plastics, 2013, 49, 351-374.	2.4	60
261	Modeling the acoustic absorption behaviour of polylactide open cell foams with bimodal structure for high acoustic absorption. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
262	Development, characterization, and modeling of environmentally friendly openâ€cell acoustic foams. Polymer Engineering and Science, 2013, 53, 1979-1989.	3.1	43
263	Development of Bio-Based Foams With Improved Acoustic and Mechanical Performance. , 2012, , .		0
264	Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes. Polymer, 2012, 53, 5816-5824.	3.8	100
265	Poly(lactic acid) crystallization. Progress in Polymer Science, 2012, 37, 1657-1677.	24.7	1,190
266	The foamability of low-melt-strength linear polypropylene with nanoclay and coupling agent. Journal of Cellular Plastics, 2012, 48, 271-287.	2.4	53
267	The orientation of carbon nanotubes in poly(ethyleneâ€ <i>co</i> â€octene) microcellular foaming and its suppression effect on cell coalescence. Polymer Engineering and Science, 2012, 52, 2078-2089.	3.1	56
268	The effects of extensional stresses on the foamability of polystyrene–talc composites blown with carbon dioxide. Chemical Engineering Science, 2012, 75, 49-62.	3.8	109
269	Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity. Chemical Engineering Science, 2012, 75, 390-399.	3.8	157
270	Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. Journal of Supercritical Fluids, 2012, 63, 187-198.	3.2	174

#	Article	IF	CITATIONS
271	Origins of the failure of classical nucleation theory for nanocellular polymer foams. Soft Matter, 2011, 7, 7351.	2.7	46
272	Steam-Chest Molding of Expanded Polypropylene Foams. 2. Mechanism of Interbead Bonding. Industrial & Engineering Chemistry Research, 2011, 50, 5523-5531.	3.7	79
273	Ultrasonic Irradiation Enhanced Cell Nucleation in Microcellular Poly(lactic Acid): A Novel Approach to Reduce Cell Size Distribution and Increase Foam Expansion. Industrial & Engineering Chemistry Research, 2011, 50, 13840-13847.	3.7	55
274	Nanosilica Addition Dramatically Improves the Cell Morphology and Expansion Ratio of Polypropylene Heterophasic Copolymer Foams Blown in Continuous Extrusion. Industrial & Engineering Chemistry Research, 2011, 50, 7282-7289.	3.7	78
275	Crystallization Kinetics of Linear and Long-Chain-Branched Polylactide. Industrial & Description (2011), 50, 13789-13798.	3.7	179
276	Synergistic Effects of Modification with Nanoclay and Polystyrene on the Foaming Behavior of a Random Copolymerized Polypropylene. Frontiers in Forests and Global Change, 2011, 30, 227-238.	1.1	8
277	Towards maximal cell density predictions for polymeric foams. Polymer, 2011, 52, 5622-5629.	3.8	26
278	The effects of nanoclay on the extrusion foaming of wood fiber/polyethylene nanocomposites. Polymer Engineering and Science, 2011, 51, 1014-1022.	3.1	27
279	Effect of nanoclay addition on the foaming behavior of linear polypropyleneâ€based soft thermoplastic polyolefin foam blown in continuous extrusion. Polymer Engineering and Science, 2011, 51, 2387-2397.	3.1	47
280	A batch foaming visualization system with extensional stress-inducing ability. Chemical Engineering Science, 2011, 66, 55-63.	3.8	77
281	The effect of dispersed elastomer particle size on heterogeneous nucleation of TPO with N2 foaming. Chemical Engineering Science, 2011, 66, 3675-3686.	3.8	37
282	Preparation of microcellular poly(ethyleneâ€ <i>co</i> â€octene) rubber foam with supercritical carbon dioxide. Journal of Applied Polymer Science, 2010, 116, 1994-2004.	2.6	35
283	The effects of clay dispersion on the mechanical, physical, and flameâ€retarding properties of wood fiber/polyethylene/clay nanocomposites. Journal of Applied Polymer Science, 2010, 118, 452-461.	2.6	50
284	Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Materials Science and Engineering C, 2010, 30, 255-262.	7.3	62
285	Interfacial tension of linear and branched PP in supercritical carbon dioxide. Journal of Supercritical Fluids, 2010, 55, 386-394.	3.2	32
286	Formation and characterization of polyethylene blends for autoclaveâ€based expandedâ€bead foams. Polymer Engineering and Science, 2010, 50, 1161-1167.	3.1	19
287	Reduction of polymer surface tension by crystallized polymer nanoparticles. Journal of Chemical Physics, 2010, 133, 144913.	3.0	12
288	Steam-Chest Molding of Expanded Polypropylene Foams. 1. DSC Simulation of Bead Foam Processing. Industrial & DSC Simulation of Bead Foam Processing.	3.7	61

#	Article	IF	CITATIONS
289	Cell Structure Evolution and the Crystallization Behavior of Polypropylene/Clay Nanocomposites Foams Blown in Continuous Extrusion. Industrial & Engineering Chemistry Research, 2010, 49, 9834-9845.	3.7	147
290	Effects of Nucleating Agents' Shapes and Interfacial Properties on Cell Nucleation. Journal of Cellular Plastics, 2010, 46, 441-460.	2.4	37
291	Determination of Solubilities of CO ₂ in Linear and Branched Polypropylene Using a Magnetic Suspension Balance and a <i>PVT</i> Apparatus. Journal of Chemical & Data, 2010, 55, 4885-4895.	1.9	50
292	Planar extensional flow resistance of a foaming plastic. Journal of Rheology, 2010, 54, 95-116.	2.6	17
293	Bi-cellular Foam Structure of Polystyrene from Extrusion Foaming Process. Journal of Cellular Plastics, 2009, 45, 539-553.	2.4	51
294	Microcellular extrusionâ€foaming of polylactide with chainâ€extender. Polymer Engineering and Science, 2009, 49, 1653-1660.	3.1	146
295	Mechanical properties and foaming behavior of cellulose fiber reinforced highâ€density polyethylene composites. Polymer Engineering and Science, 2009, 49, 2179-2188.	3.1	36
296	Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes. Chemical Engineering Science, 2009, 64, 4899-4907.	3.8	109
297	Strategies To Estimate the Pressure Drop Threshold of Nucleation for Polystyrene Foam with Carbon Dioxide. Industrial & Dioxide. Ind	3.7	19
298	A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2. International Journal of Molecular Sciences, 2009, 10, 5381-5397.	4.1	182
299	Effect of Processing Parameters on the Mechanical Properties of Injection Molded Thermoplastic Polyolefin (TPO) Cellular Foams. Macromolecular Materials and Engineering, 2008, 293, 605-613.	3.6	69
300	Ideal surface geometries of nucleating agents to enhance cell nucleation in polymeric foaming processes. Journal of Applied Polymer Science, 2008, 108, 3997-4003.	2.6	46
301	Effect of die geometry on foaming behaviors of highâ€meltâ€strength polypropylene with CO ₂ . Journal of Applied Polymer Science, 2008, 109, 3122-3132.	2.6	36
302	Advanced structural foam molding using a continuous polymer/gas melt flow stream. Journal of Applied Polymer Science, 2008, 109, 2855-2861.	2.6	25
303	Effects of the die geometry on the expansion of polystyrene foams blown with carbon dioxide. Journal of Applied Polymer Science, 2008, 109, 3329-3336.	2.6	26
304	Effect of branched PP content on the physical properties and cell growth during foaming of TPOs. Journal of Applied Polymer Science, 2008, 110, 817-824.	2.6	17
305	Strategies to Achieve a Uniform Cell Structure with a High Void Fraction in Advanced Structural Foam Molding. Industrial & Engineering Chemistry Research, 2008, 47, 9457-9464.	3.7	77
306	Foamability of Thermoplastic Vulcanizates Blown with Various Physical Blowing Agents. Journal of Cellular Plastics, 2008, 44, 53-67.	2.4	27

#	Article	IF	Citations
307	Reducing Material Costs with Microcellular/Fine-celled Foaming. Journal of Cellular Plastics, 2007, 43, 297-312.	2.4	26
308	Improvement of Cell Opening by Maintaining a High Temperature Difference in the Surface and Core of a Foam Extrudate. Journal of Cellular Plastics, 2007, 43, 431-444.	2.4	35
309	Role of Processing Temperature in Polystyrene and Polycarbonate Foaming with Carbon Dioxide. Industrial & Dioxide Chemistry Research, 2007, 46, 7107-7116.	3.7	41
310	Impact of approximating the initial bubble pressure on cell nucleation in polymeric foaming processes. Journal of Applied Polymer Science, 2007, 104, 902-908.	2.6	19
311	Effects of clay dispersion and content on the rheological, mechanical properties, and flame retardance of HDPE/clay nanocomposites. Journal of Applied Polymer Science, 2007, 105, 1993-1999.	2.6	49
312	Effect of processing parameters on the cellular morphology and mechanical properties of thermoplastic polyolefin (TPO) microcellular foams. Advances in Polymer Technology, 2007, 26, 232-246.	1.7	26
313	The rheological and physical properties of linear and branched polypropylene blends. Polymer Engineering and Science, 2007, 47, 1133-1140.	3.1	53
314	Computer Simulation of Bubble-Growth Phenomena in Foaming. Industrial & Engineering Chemistry Research, 2006, 45, 7823-7831.	3.7	108
315	A Microcellular Foaming Simulation System with a High Pressure-Drop Rate. Industrial & Engineering Chemistry Research, 2006, 45, 6153-6161.	3.7	95
316	Effects of CO2 and Talc Contents on Foaming Behavior of Recyclable High-melt-strength PP. Journal of Cellular Plastics, 2006, 42, 405-428.	2.4	43
317	Strategies for Achieving Microcellular LDPE Foams in Extrusion. Frontiers in Forests and Global Change, 2006, 25, 1-18.	1.1	23
318	Extruded Open-Cell Foams Using Two Semicrystalline Polymers with Different Crystallization Temperatures. Industrial & Different Crystallization Research, 2006, 45, 175-181.	3.7	148
319	Extrusion of microcellular open-cell LDPE-based sheet foams. Journal of Applied Polymer Science, 2006, 102, 3376-3384.	2.6	35
320	Use of Nitrogen as a Blowing Agent for the Production of Fine-Celled High-Density Polyethylene Foams. Macromolecular Materials and Engineering, 2006, 291, 1233-1244.	3.6	49
321	Manufacture of Integral Skin PP Foam Composites in Rotational Molding. Journal of Cellular Plastics, 2006, 42, 139-152.	2.4	10
322	A Study on the Foaming Behaviors of PP Resins with Talc as Nucleating Agent. Journal of Polymer Engineering, 2006, 26, .	1.4	21
323	The Effects of Exfoliated Nano-clay on the Extrusion Microcellular Foaming of Amorphous and Crystalline Nylon. Journal of Cellular Plastics, 2006, 42, 271-288.	2.4	42
324	Increase of open-cell content by plasticizing soft regions with secondary blowing agent. Polymer Engineering and Science, 2005, 45, 1445-1451.	3.1	47

#	Article	IF	CITATIONS
325	HDPE-Clay Nanocomposite Foams Blown with Supercritical CO2. Journal of Cellular Plastics, 2005, 41, 487-502.	2.4	67
326	Fundamental Study of CBA-blown Bubble Growth and Collapse Under Atmospheric Pressure. Journal of Cellular Plastics, 2005, 41, 519-538.	2.4	26
327	Effect of Supercritical Gas on Crystallization of Linear and Branched Polypropylene Resins with Foaming Additives. Industrial & Engineering Chemistry Research, 2005, 44, 6685-6691.	3.7	68
328	Challenge to Extrusion of Low-Density Microcellular Polycarbonate Foams Using Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2005, 44, 92-99.	3.7	72
329	Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of Applied Polymer Science, 2004, 91, 2661-2668.	2.6	236
330	Rotational foam molding of polypropylene with control of melt strength. Advances in Polymer Technology, 2003, 22, 280-296.	1.7	44
331	Processing of microcellular preceramics using carbon dioxide. Composites Science and Technology, 2003, 63, 2371-2377.	7.8	63
332	The importance of timely polymer sintering while processing polypropylene foams in rotational molding. Polymer Engineering and Science, 2003, 43, 40-54.	3.1	29
333	Effects of die geometry on cell nucleation of PS foams blown with CO2. Polymer Engineering and Science, 2003, 43, 1378-1390.	3.1	176
334	Strategies for achieving ultra low-density polypropylene foams. Polymer Engineering and Science, 2002, 42, 1481-1492.	3.1	243
335	Study of Shear and Extensional Viscosities of Biodegradable PBS/CO2 Solutions. Journal of Cellular Plastics, 2001, 37, 109-148.	2.4	38
336	Foaming of PS/wood fiber composites using moisture as a blowing agent. Polymer Engineering and Science, 2000, 40, 2124-2132.	3.1	85
337	Measurements and modeling of PS/supercritical CO2 solution viscosities. Polymer Engineering and Science, 1999, 39, 99-109.	3.1	152
338	Microcellular sheet extrusion system process design models for shaping and cell growth control. Polymer Engineering and Science, 1998, 38, 674-688.	3.1	46
339	Extrusion of PE/PS blends with supercritical carbon dioxide. Polymer Engineering and Science, 1998, 38, 1112-1120.	3.1	111
340	Processing and characterization of microcellular foamed high-density polythylene/isotactic polypropylene blends. Polymer Engineering and Science, 1998, 38, 1205-1215.	3.1	237
341	Low density microcellular foam processing in extrusion using CO2. Polymer Engineering and Science, 1998, 38, 1812-1823.	3.1	248
342	Cell morphology and property relationships of microcellular foamed pvc/wood-fiber composites. Polymer Engineering and Science, 1998, 38, 1862-1872.	3.1	223

#	ARTICLE	IF	CITATIONS
343	Production of low-density LLDPE foams in rotational molding. Polymer Engineering and Science, 1998, 38, 1997-2009.	3.1	58
344	A study of cell nucleation in the extrusion of polypropylene foams. Polymer Engineering and Science, 1997, 37, 1-10.	3.1	285
345	Processing and cell morphology relationships for microcellular foamed PVC/wood-fiber composites. Polymer Engineering and Science, 1997, 37, 1137-1147.	3.1	180
346	Filamentary extrusion of microcellular polymers using a rapid decompressive element. Polymer Engineering and Science, 1996, 36, 34-48.	3.1	161
347	An extrusion system for the processing of microcellular polymer sheets: Shaping and cell growth control. Polymer Engineering and Science, 1996, 36, 1425-1435.	3.1	99
348	A microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states. Part I: Microcell nucleation. Polymer Engineering and Science, 1996, 36, 1437-1445.	3.1	207
349	A microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states. Part II: Cell growth and process design. Polymer Engineering and Science, 1996, 36, 1446-1453.	3.1	129
350	Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers. Polymer Engineering and Science, 1996, 36, 2645-2662.	3.1	263
351	Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polymer Engineering and Science, 1995, 35, 432-440.	3.1	377
352	Scalable Fabrication of Microcellular Openâ€Cell Polymer Foam. Advanced Engineering Materials, 0, , .	3.5	3
353	A hybrid lattice Boltzmann-molecular dynamics-immersed boundary method model for the simulation of composite foams. Computational Mechanics, 0 , 1 .	4.0	0