Jokūbas Žiburkus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3210012/publications.pdf

Version: 2024-02-01

516215 642321 1,391 24 16 23 g-index citations h-index papers 25 25 25 1677 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Three-dimensional GPU-accelerated active contours for automated localization of cells in large images. PLoS ONE, 2019, 14, e0215843.	1.1	3
2	Robust Cell Detection for Large-Scale 3D Microscopy Using GPU-Accelerated Iterative Voting. Frontiers in Neuroanatomy, 2018, 12, 28.	0.9	5
3	Effects of experimental traumatic brain injury and impaired glutamate transport on cortical spreading depression. Experimental Neurology, 2017, 295, 155-161.	2.0	19
4	The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization. PLoS Computational Biology, 2017, 13, e1005804.	1.5	32
5	From Molecular Circuit Dysfunction to Disease. Neuroscientist, 2016, 22, 295-312.	2.6	26
6	Analyzing and Modeling the Dysfunction of Inhibitory Neurons in Alzheimer's Disease. PLoS ONE, 2016, 11, e0168800.	1.1	18
7	WONOEP appraisal: Molecular and cellular imaging in epilepsy. Epilepsia, 2015, 56, 505-513.	2.6	6
8	Purinergic control of hippocampal circuit hyperexcitability in <scp>D</scp> ravet syndrome. Epilepsia, 2014, 55, 245-255.	2.6	21
9	Oxygen and seizure dynamics: I. Experiments. Journal of Neurophysiology, 2014, 112, 205-212.	0.9	35
10	Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events. Journal of Neurophysiology, 2013, 109, 1296-1306.	0.9	87
11	Inhibitory Neuron and Hippocampal Circuit Dysfunction in an Aged Mouse Model of Alzheimer's Disease. PLoS ONE, 2013, 8, e64318.	1.1	73
12	\hat{l}^2 -Adrenergic modulation of spontaneous spatiotemporal activity patterns and synchrony in hyperexcitable hippocampal circuits. Journal of Neurophysiology, 2012, 108, 658-671.	0.9	9
13	Kalman filter tracking of intracellular neuronal voltage and current. , 2011, , .		11
14	LTD and LTP at the Developing Retinogeniculate Synapse. Journal of Neurophysiology, 2009, 102, 3082-3090.	0.9	21
15	The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal of Computational Neuroscience, 2009, 26, 159-170.	0.6	230
16	Towards a Dynamics of Seizure Mechanics. , 2008, , 496-XVIII.		2
17	Neuromodulators Control the Polarity of Spike-Timing-Dependent Synaptic Plasticity. Neuron, 2007, 55, 919-929.	3.8	363
18	Neuromodulators Control the Polarity of Spike-Timing-Dependent Synaptic Plasticity. Neuron, 2007, 56, 754.	3.8	2

#	Article	IF	CITATIONS
19	Loss of Binocular Responses and Reduced Retinal Convergence During the Period of Retinogeniculate Axon Segregation. Journal of Neurophysiology, 2006, 96, 2775-2784.	0.9	60
20	Interneuron and Pyramidal Cell Interplay During In Vitro Seizure-Like Events. Journal of Neurophysiology, 2006, 95, 3948-3954.	0.9	246
21	Nature of Inhibitory Postsynaptic Activity in Developing Relay Cells of the Lateral Geniculate Nucleus. Journal of Neurophysiology, 2003, 90, 1063-1070.	0.9	26
22	Synaptic Mechanisms Regulating the Activation of a Ca ²⁺ -Mediated Plateau Potential in Developing Relay Cells of the LGN. Journal of Neurophysiology, 2002, 87, 1175-1185.	0.9	58
23	NMDAR-1 staining in the lateral geniculate nucleus of normal and visually deprived cats. Visual Neuroscience, 2000, 17, 187-196.	0.5	5
24	A novel means of Y cell identification in the developing lateral geniculate nucleus of the cat. Neuroscience Letters, 2000, 295, 5-8.	1.0	16