Junsheng Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3209683/publications.pdf

Version: 2024-02-01

90 papers 3,922 citations

36 h-index 60 g-index

97 all docs

97
docs citations

97 times ranked 2954 citing authors

#	Article	IF	CITATIONS
1	Controls of precipitation and vegetation variability on the NE Tibetan Plateau during the late Pliocene warmth (~3.5–3.0ÂMa). Global and Planetary Change, 2022, 208, 103707.	1.6	3
2	No major temporal provenance variation on the Chinese Loess Plateau since the late Miocene $\hat{a} \in \mathbb{C}^n$ insight from stable heavy mineral ratios. Geosystems and Geoenvironment, 2022, 1, 100022.	1.7	3
3	Correlation Between brGDGTs Distribution and Elevation From the Eastern Qilian Shan. Frontiers in Earth Science, 2022, 10, .	0.8	1
4	Similar Magnetic Enhancement Mechanisms Between Chinese Loess and Alluvial Sediments From the Teruel Basin, NE Spain, and Paleoclimate Implications. Geophysical Research Letters, 2022, 49, .	1.5	4
5	Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue. Nature Communications, 2022, 13, 1329.	5.8	49
6	Late Miocene Tarim desert wetting linked with eccentricity minimum and East Asian monsoon weakening. Nature Communications, 2022, 13, .	5.8	5
7	Coupling of tectonic uplift and climate change as influences on drainage evolution: A case study at the NE margin of the Tibetan Plateau. Catena, 2022, 216, 106433.	2.2	2
8	Distinguishing tectonic versus climatic forcing on landscape evolution: An example from SE Tibetan Plateau. Bulletin of the Geological Society of America, 2021, 133, 233-242.	1.6	12
9	Joint insolation and ice sheet/CO2 forcing on northern China precipitation during Pliocene warmth. Science Bulletin, 2021, 66, 319-322.	4.3	9
10	Preface (volume I): Quaternary paleoclimate and paleoenvironmental changes in Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 568, 110319.	1.0	5
11	Antiâ€Phase Strengthening of the South and East Asian Summer Monsoons During the Early Pliocene Driven by Southern Hemisphere Ice Volume. Paleoceanography and Paleoclimatology, 2021, 36, e2021PA004211.	1.3	1
12	Spatially variable provenance of the Chinese Loess Plateau. Geology, 2021, 49, 1155-1159.	2.0	38
13	Climatic Forcing of Plioâ€Pleistocene Formation of the Modern Limpopo River, South Africa. Geophysical Research Letters, 2021, 48, e2021GL093887.	1.5	5
14	Millennial Resolution Late Miocene Northern China Precipitation Record Spanning Astronomical Analogue Interval to the Future. Geophysical Research Letters, 2021, 48, e2021GL093942.	1.5	5
15	Detailed Processes and Potential Mechanisms of Pliocene Salty Lake Evolution in the Western Qaidam Basin. Frontiers in Earth Science, 2021, 9, .	0.8	1
16	Eccentricity forcing of East Asian monsoonal systems over the past 3 million years. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
17	Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau. Bulletin of the Geological Society of America, 2020, 132, 310-320.	1.6	94
18	Source-to-sink fluctuations of Asian aeolian deposits since the late Oligocene. Earth-Science Reviews, 2020, 200, 102963.	4.0	61

#	Article	IF	CITATIONS
19	Middle-late Miocene rapid exhumation of the southern Qilian Shan and implications for propagation of the Tibetan Plateau. Tectonophysics, 2020, 774, 228279.	0.9	25
20	A wind-albedo-wind feedback driven by landscape evolution. Nature Communications, 2020, 11, 96.	5.8	13
21	Temperature Control on Silicate Weathering Intensity and Evolution of the Neogene East Asian Summer Monsoon. Geophysical Research Letters, 2020, 47, e2020GL088808.	1.5	35
22	Revised chronology of central Tibet uplift (Lunpola Basin). Science Advances, 2020, 6, .	4.7	109
23	A Quantitative Modelâ€Based Assessment of Stony Desert Landscape Evolution in the Hami Basin, China: Implications for Plioâ€Pleistocene Dust Production in Eastern Asia. Geophysical Research Letters, 2020, 47, e2020GL090064.	1.5	4
24	Orbital Forcing of Late Miocene–Early Pleistocene Environmental Change in the Zhada Basin, SW Tibetan Plateau. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003781.	1.3	3
25	Detection of Strong Precession Cycles from the Late Pliocene Sedimentary Records of Northeastern Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 2019, 20, 3901-3912.	1.0	15
26	Central Asian Drying at 3.3 Ma Linked to Tropical Forcing?. Geophysical Research Letters, 2019, 46, 10561-10567.	1.5	17
27	Evolution of the Upper Yellow River as Revealed by Changes in Heavy-Mineral and Geochemical (REE) Signatures of Fluvial Terraces (Lanzhou, China). Minerals (Basel, Switzerland), 2019, 9, 603.	0.8	7
28	Confirmation of a Late Miocene Subchron C4n.2nâ€1r From the Eastern Qaidam Basin in the NE Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2019, 124, 12354-12365.	1.4	1
29	Testing Contrasting Models of the Formation of the Upper Yellow River Using Heavyâ€Mineral Data From the Yinchuan Basin Drill Cores. Geophysical Research Letters, 2019, 46, 10338-10345.	1.5	21
30	Provenance Control on Chemical Weathering Index of Fluvioâ€Lacustrine Sediments: Evidence From the Qaidam Basin, NE Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 2019, 20, 3216-3224.	1.0	17
31	Pre-Quaternary decoupling between Asian aridification and high dust accumulation rates. Science Advances, 2018, 4, eaao6977.	4.7	85
32	New insights into the plasmonic enhancement for photocatalytic H ₂ production by Cuâ€"TiO ₂ upon visible light illumination. Physical Chemistry Chemical Physics, 2018, 20, 5264-5273.	1.3	60
33	Late Pliocene establishment of exorheic drainage in the northeastern Tibetan Plateau as evidenced by the Wuquan Formation in the Lanzhou Basin. Geomorphology, 2018, 303, 271-283.	1.1	26
34	The Plio-Pleistocene 405-kyr climate cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510, 26-30.	1.0	12
35	Orbital forcing of Plio-Pleistocene climate variation in a Qaidam Basin lake based on paleomagnetic and evaporite mineralogic analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510, 31-39.	1.0	15
36	A major change in precipitation gradient on the Chinese Loess Plateau at the Pliocene-Quaternary boundary. Journal of Asian Earth Sciences, 2018, 155, 134-138.	1.0	20

#	Article	IF	Citations
37	Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nature Geoscience, 2018, 11, 944-948.	5.4	154
38	A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene. Earth and Planetary Science Letters, 2018, 499, 134-144.	1.8	41
39	Intensified aridity in northern China during the middle Piacenzian warm period. Journal of Asian Earth Sciences, 2017, 147, 222-225.	1.0	11
40	Goethite Concentration Variations in the Red Clay Sequence on the Chinese Loess Plateau. Geochemistry, Geophysics, Geosystems, 2017, 18, 4179-4185.	1.0	7
41	Orbitally-paced variations of water availability in the SE Asian Monsoon region following the Miocene Climate Transition. Earth and Planetary Science Letters, 2017, 474, 272-282.	1.8	15
42	Provenance analysis reveals mountain uplift in the midsection of the Altyn Tagh Fault during the Middle Miocene. Canadian Journal of Earth Sciences, 2017, 54, 278-289.	0.6	3
43	Dominant 100,000-year precipitation cyclicity in a late Miocene lake from northeast Tibet. Science Advances, 2017, 3, e1600762.	4.7	114
44	A Review of Recent Advances in Red-Clay Environmental Magnetism and Paleoclimate History on the Chinese Loess Plateau. Frontiers in Earth Science, 2016, 4, .	0.8	24
45	Unmixing hysteresis loops of the late Miocene–early Pleistocene loess-red clay sequence. Scientific Reports, 2016, 6, 29515.	1.6	6
46	A comparison of zircon U-Pb age results of the Red Clay sequence on the central Chinese Loess Plateau. Scientific Reports, 2016, 6, 29642.	1.6	8
47	A comparison of heavy mineral assemblage between the loess and the Red Clay sequences on the Chinese Loess Plateau. Aeolian Research, 2016, 21, 87-91.	1.1	28
48	Tectonic and climate controls on Neogene environmental change in the Zhada Basin, southwestern Tibetan Plateau. Geology, 2016, 44, 919-922.	2.0	16
49	Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: Inferences from depositional patterns and multiproxy detrital provenance signatures. Lithosphere, 2016, 8, 58-82.	0.6	123
50	Late Tertiary reorganizations of deformation in northeastern Tibet constrained by stratigraphy and provenance data from eastern Longzhong Basin. Journal of Geophysical Research: Solid Earth, 2015, 120, 5804-5821.	1.4	41
51	Application of detrital zircon U-Pb geochronology to surface and subsurface correlations of provenance, paleodrainage, and tectonics of the Middle Magdalena Valley Basin of Colombia., 2015, 11, 1790-1811.		78
52	Quaternary dust source variation across the Chinese Loess Plateau. Palaeogeography, Palaeoecology, 2015, 435, 254-264.	1.0	96
53	Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications, 2015, 6, 8511.	5.8	283
54	Automated SEM–EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau. Aeolian Research, 2014, 13, 71-75.	1.1	55

#	Article	IF	Citations
55	Provenance of the upper Miocene–Pliocene Red Clay deposits of the Chinese loess plateau. Earth and Planetary Science Letters, 2014, 407, 35-47.	1.8	90
56	Late Miocene-early Pleistocene paleoclimate history of the Chinese Loess Plateau revealed by remanence unmixing. Geophysical Research Letters, 2014, 41, 2163-2168.	1.5	33
57	Pacific freshening drives Pliocene cooling and Asian monsoon intensification. Scientific Reports, 2014, 4, 5474.	1.6	98
58	Mixing of Source Populations Recorded in Detrital Zircon U-Pb Age Spectra of Modern River Sands. Journal of Geology, 2013, 121, 17-33.	0.7	86
59	Characterizing the superparamagnetic grain distribution of Chinese red-clay sequences by thermal fluctuation tomography. Global and Planetary Change, 2013, 110, 364-367.	1.6	16
60	Six million years of magnetic grain-size records reveal that temperature and precipitation were decoupled on the Chinese Loess Plateau during ~ 4.5–2.6 Ma. Quaternary Research, 2013, 79, 465-470.	1.0	39
61	Controlling factors on heavy mineral assemblages in Chinese loess and Red Clay. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 381-382, 110-118.	1.0	44
62	Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia. Bulletin of the Geological Society of America, 2012, 124, 762-779.	1.6	93
63	The importance of solar insolation on the temperature variations for the past 110 kyr on the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 317-318, 128-133.	1.0	69
64	Rock magnetism in loess from the middle Tian Shan: Implications for paleoenvironmental interpretations of magnetic properties of loess deposits in Central Asia. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	16
65	Integrated provenance analysis of a convergent retroarc foreland system: U–Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth-Science Reviews, 2012, 110, 111-126.	4.0	143
66	Coupled 100-kyr cycles between 3 and 1 Ma in terrestrial and marine paleoclimatic records. Geochemistry, Geophysics, Geosystems, 2011, 12, $n/a-n/a$.	1.0	19
67	Evaluating foreland basin partitioning in the northern Andes using Cenozoic fill of the Floresta basin, Eastern Cordillera, Colombia. Basin Research, 2011, 23, 377-402.	1.3	49
68	Magnetic properties of surface soils across the southern Tarim Basin and their relationship with climate and source materials. Science Bulletin, 2011, 56, 290-296.	1.7	19
69	Resolving uplift of the northern Andes using detrital zircon age signatures. GSA Today, 2010, , 4-10.	1.1	81
70	Cenozoic tectonic evolution in the western Qaidam Basin inferred from subsurface data. Geosciences Journal, 2010, 14, 335-344.	0.6	20
71	Loess magnetic properties in the Ili Basin and their correlation with the Chinese Loess Plateau. Science China Earth Sciences, 2010, 53, 419-431.	2.3	70
72	Methoxy n-fatty acids in surface soils from the Gongga and Kunlun Mountains: Ecological implications. Science Bulletin, 2010, 55, 2258-2267.	1.7	1

#	Article	IF	CITATIONS
73	Consistent grain size distribution of pedogenic maghemite of surface soils and Miocene loessic soils on the Chinese Loess Plateau. Journal of Quaternary Science, 2010, 25, 261-266.	1.1	45
74	Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Bulletin of the Geological Society of America, 2010, 122, 1423-1442.	1.6	153
75	A rock magnetic study of loess from the West Kunlun Mountains. Journal of Geophysical Research, 2010, 115, .	3.3	61
76	Tracking exhumation of Andean ranges bounding the Middle Magdalena Valley Basin, Colombia. Geology, 2010, 38, 451-454.	2.0	67
77	HIRM variations in the Chinese red-clay sequence: Insights into pedogenesis in the dust source area. Journal of Asian Earth Sciences, 2010, 38, 96-104.	1.0	41
78	Controls on the isotopic composition of surface water and precipitation in the Northern Andes, Colombian Eastern Cordillera. Geochimica Et Cosmochimica Acta, 2009, 73, 6999-7018.	1.6	39
79	A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271, 161-169.	1.0	78
80	Link between benthic oxygen isotopes and magnetic susceptibility in the redâ \in clay sequence on the Chinese Loess Plateau. Geophysical Research Letters, 2008, 35, .	1.5	43
81	Correlation between the magnetic susceptibility record of the Chinese aeolian sequences and the marine benthic oxygen isotope record. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	20
82	Surface-water freshening: A cause for the onset of North Pacific stratification from 2.75ÂMa onward?. Global and Planetary Change, 2008, 64, 49-52.	1.6	10
83	Late Plioceneâ€early Pleistocene 100â€ka problem. Geophysical Research Letters, 2008, 35, .	1.5	22
84	AC magnetic susceptibility studies of Chinese red clay sediments between 4.8 and 4.1 Ma: Paleoceanographic and paleoclimatic implications. Journal of Geophysical Research, 2008, 113 , .	3.3	27
85	Study on Land use and Land Cover Change with the Integration of RS, GIS and GPS Technologies-The Case of Baotou City in the Ecotone of Agriculture-Animal Husbandry, China. , 2008, , .		2
86	Tibetan uplift intensified the 400 k.y. signal in paleoclimate records at 4 Ma. Bulletin of the Geological Society of America, 2008, 120, 1338-1344.	1.6	42
87	Study on Eco-Environmental Degradation and Sustainable Development in Madoi County, Yellow River Source Regions, China. , 2008, , .		0
88	Loess Magnetic Susceptibility in Central Asia and its Paleoclimatic Significance., 2008, , .		0
89	Enhancement mechanisms of magnetic susceptibility in the Chinese redâ€clay sequence. Geophysical Research Letters, 2007, 34, .	1.5	76
90	Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. Bulletin of the Geological Society of America, 2005, 117, 1208.	1.6	295