List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3209672/publications.pdf Version: 2024-02-01

PENC MANO

#	Article	IF	CITATIONS
1	A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 2016, 4, 762-787.	3.3	678
2	Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Industrial Crops and Products, 2010, 31, 233-238.	2.5	387
3	Enhanced degradation of Bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: Effects of pH, inorganic anions, and water matrix. Chemical Engineering Journal, 2018, 338, 300-310.	6.6	332
4	Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Applied Surface Science, 2010, 256, 3309-3315.	3.1	246
5	Study and application status of microwave in organic wastewater treatment – A review. Chemical Engineering Journal, 2016, 283, 193-214.	6.6	141
6	Facile synthesis of novel Co3O4-Bi2O3 catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation. Chemical Engineering Journal, 2017, 326, 1095-1104.	6.6	139
7	Visible-light-driven photo-Fenton reactions using Zn1-1.5Fe S/g-C3N4 photocatalyst: Degradation kinetics and mechanisms analysis. Applied Catalysis B: Environmental, 2020, 266, 118653.	10.8	135
8	Application of nickel foam-supported Co3O4-Bi2O3 as a heterogeneous catalyst for BPA removal by peroxymonosulfate activation. Science of the Total Environment, 2019, 647, 352-361.	3.9	134
9	Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater. Journal of Hazardous Materials, 2009, 168, 238-245.	6.5	123
10	Polyacrylonitrile-based fiber modified with thiosemicarbazide by microwave irradiation and its adsorption behavior for Cd(II) and Pb(II). Journal of Hazardous Materials, 2016, 307, 64-72.	6.5	119
11	Enhanced catalytic sulfamethoxazole degradation via peroxymonosulfate activation over amorphous CoSx@SiO2 nanocages derived from ZIF-67. Journal of Hazardous Materials, 2022, 423, 126998.	6.5	119
12	Microwave enhanced Fenton-like process for degradation of perfluorooctanoic acid (PFOA) using Pb-BiFeO3/rGO as heterogeneous catalyst. Chemical Engineering Journal, 2017, 326, 756-764.	6.6	116
13	Microwave-enhanced Mn-Fenton process for the removal of BPA in water. Chemical Engineering Journal, 2016, 294, 371-379.	6.6	114
14	Removal of antibiotics using polyethylenimine cross-linked nanofiltration membranes: Relating membrane performance to surface charge characteristics. Chemical Engineering Journal, 2018, 335, 101-109.	6.6	111
15	Facile synthesis of Ag2O/ZnO/rGO heterojunction with enhanced photocatalytic activity under simulated solar light: Kinetics and mechanism. Journal of Hazardous Materials, 2021, 403, 124011.	6.5	103
16	Microwave-responsive catalysts for wastewater treatment: A review. Chemical Engineering Journal, 2020, 382, 122781.	6.6	92
17	Degradation of p-nitrophenol using CuO/Al ₂ O ₃ as a Fenton-like catalyst under microwave irradiation. RSC Advances, 2015, 5, 27043-27051.	1.7	83
18	Rapid and effective preparation of a HPEI modified biosorbent based on cellulose fiber with a microwave irradiation method for enhanced arsenic removal in water. Journal of Materials Chemistry A. 2016, 4, 15851-15860.	5.2	83

#	Article	IF	CITATIONS
19	Catalytic degradation of p-nitrophenol by magnetically recoverable Fe3O4 as a persulfate activator under microwave irradiation. Chemosphere, 2020, 240, 124977.	4.2	79
20	The application of microwaves in sulfate radical-based advanced oxidation processes for environmental remediation: A review. Science of the Total Environment, 2020, 722, 137831.	3.9	77
21	Synthesis of Mn-doped ZnS microspheres with enhanced visible light photocatalytic activity. Applied Surface Science, 2017, 391, 557-564.	3.1	76
22	Preparation and performance of polyacrylonitrile fiber functionalized with iminodiacetic acid under microwave irradiation for adsorption of Cu(II) and Hg(II). Chemical Engineering Journal, 2015, 276, 349-357.	6.6	74
23	Microwave Assisted Preparation of Thio-Functionalized Polyacrylonitrile Fiber for the Selective and Enhanced Adsorption of Mercury and Cadmium from Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 6054-6063.	3.2	70
24	Photocatalytic PVDF ultrafiltration membrane blended with visible-light responsive Fe(III)-TiO2 catalyst: Degradation kinetics, catalytic performance and reusability. Chemical Engineering Journal, 2021, 417, 129340.	6.6	67
25	Enhanced degradation of PFOA in water by dielectric barrier discharge plasma in a coaxial cylindrical structure with the assistance of peroxymonosulfate. Chemical Engineering Journal, 2020, 389, 124381.	6.6	66
26	Effect of Microwave Heating on Persulfate Activation for Rapid Degradation and Mineralization of <i>p</i> -Nitrophenol. ACS Sustainable Chemistry and Engineering, 2019, 7, 11662-11671.	3.2	65
27	Removal of As(III) and As(V) from water using iron doped amino functionalized sawdust: Characterization, adsorptive performance and UF membrane separation. Chemical Engineering Journal, 2016, 292, 163-173.	6.6	60
28	Optimization of the catalytic activity of a ZnCo2O4 catalyst in peroxymonosulfate activation for bisphenol A removal using response surface methodology. Chemosphere, 2018, 212, 152-161.	4.2	55
29	Degradation of remazol golden yellow dye wastewater in microwave enhanced ClO2 catalytic oxidation process. Journal of Hazardous Materials, 2009, 168, 895-900.	6.5	54
30	Efficient microwave-assisted photocatalytic degradation of endocrine disruptor dimethyl phthalate over composite catalyst ZrOx/ZnO. Journal of Environmental Sciences, 2010, 22, 1800-1806.	3.2	54
31	Characterization of fluorescence foulants on ultrafiltration membrane using front-face excitation-emission matrix (FF-EEM) spectroscopy: Fouling evolution and mechanism analysis. Water Research, 2019, 148, 546-555.	5.3	52
32	Efficient peroxymonosulfate activation by CuO-Fe2O3/MXene composite for atrazine degradation: Performance, coexisting matter influence and mechanism. Chemical Engineering Journal, 2022, 440, 135863.	6.6	51
33	Treatment of phenol wastewater by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process. Journal of Environmental Sciences, 2007, 19, 1510-1515.	3.2	50
34	Cu(II)–Fe(II)–H2O2 oxidative removal of 3-nitroaniline in water under microwave irradiation. Chemical Engineering Journal, 2015, 260, 386-392.	6.6	50
35	Pilot-scale treatment of p-Nitrophenol wastewater by microwave-enhanced Fenton oxidation process: Effects of system parameters and kinetics study. Chemical Engineering Journal, 2014, 239, 351-359.	6.6	49
36	Equilibrium and kinetics of aniline adsorption onto crosslinked sawdust-cyclodextrin polymers. RSC Advances, 2014, 4, 40071-40077.	1.7	44

#	Article	IF	CITATIONS
37	Enhanced persulfate oxidation of organic pollutants and removal of total organic carbons using natural magnetite and microwave irradiation. Chemical Engineering Journal, 2020, 383, 123140.	6.6	44
38	Enhancing the performance of polyethylenimine modified nanofiltration membrane by coating a layer of sulfonated poly(ether ether ketone) for removing sulfamerazine. Journal of Membrane Science, 2015, 492, 620-629.	4.1	43
39	Catalytic activity of CuOn–La2O3∫γ-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater. Journal of Hazardous Materials, 2008, 154, 543-549.	6.5	40
40	Effects of organic acids and initial solution pH on photocatalytic degradation of bisphenol A (BPA) in a photo-Fenton-like process using goethite (α-FeOOH). Photochemical and Photobiological Sciences, 2016, 15, 1046-1053.	1.6	40
41	The pH effects on H2 evolution kinetics for visible light water splitting over the Ru/(CuAg)0.15In0.3Zn1.4S2 photocatalyst. International Journal of Hydrogen Energy, 2013, 38, 11727-11736.	3.8	35
42	One-step synthesis of a 3D/2D Bi2WO6/g-C3N4 heterojunction for effective photocatalytic degradation of atrazine: Kinetics, degradation mechanisms and ecotoxicity. Separation and Purification Technology, 2022, 288, 120609.	3.9	35
43	Visible-light responsive g-C3N4 coupled with ZnS nanoparticles via a rapid microwave route: Characterization and enhanced photocatalytic activity. Applied Surface Science, 2019, 488, 360-369.	3.1	34
44	Microwave-assisted synthesis of BiFeO ₃ nanoparticles with high catalytic performance in microwave-enhanced Fenton-like process. RSC Advances, 2016, 6, 82439-82446.	1.7	33
45	Photocatalytic oxidation of norfloxacin by Zn0.9Fe0.1S supported on Ni-foam under visible light irradiation. Chemosphere, 2019, 230, 406-415.	4.2	32
46	Submerged membrane photocatalytic reactor for advanced treatment of p-nitrophenol wastewater through visible-light-driven photo-Fenton reactions. Separation and Purification Technology, 2021, 256, 117783.	3.9	31
47	Enhanced 4-FP removal with MnFe2O4 catalysts under dielectric barrier discharge plasma: Economical synthesis, catalytic performance and degradation mechanism. Journal of Hazardous Materials, 2021, 414, 125602.	6.5	31
48	Facile and rapid microwave-assisted preparation of Cu/Fe-AO-PAN fiber for PNP degradation in a photo-Fenton system under visible light irradiation. Separation and Purification Technology, 2019, 209, 270-278.	3.9	30
49	Facile preparation of amidoxime-functionalized fiber by microwave-assisted method for the enhanced adsorption of chromium(<scp>vi</scp>) from aqueous solution. RSC Advances, 2016, 6, 64665-64675.	1.7	29
50	Effect of quorum quenching on biofouling and ammonia removal in membrane bioreactor under stressful conditions. Chemosphere, 2018, 199, 114-121.	4.2	28
51	Microwave-assisted synthesis of ZnNiAl-layered double hydroxides with calcination treatment for enhanced PNP photo-degradation under visible-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 633-641.	2.0	27
52	Application of BiFeO 3 -based on nickel foam composites with a highly efficient catalytic activity and easily recyclable in Fenton-like process under microwave irradiation. Journal of Power Sources, 2018, 386, 21-27.	4.0	27
53	Removal of As(<scp>iii</scp>) from water using modified jute fibres as a hybrid adsorbent. RSC Advances, 2015, 5, 10723-10732.	1.7	25
54	Visualized Fibrous Adsorbent Prepared by the Microwave-Assisted Method for Both Detection and Removal of Heavy Metal lons. ACS Sustainable Chemistry and Engineering, 2019, 7, 1159-1168.	3.2	25

#	Article	IF	CITATIONS
55	Treatment of an industrial chemical wasteâ€water using a granular activated carbon adsorptionâ€microwave regeneration process. Journal of Chemical Technology and Biotechnology, 2012, 87, 1004-1009.	1.6	24
56	Effect of peroxydisulfate on the degradation of phenol under dielectric barrier discharge plasma treatment. Chemosphere, 2019, 232, 462-470.	4.2	23
57	Photocatalytic hydrogen production under visible-light irradiation on (CuAg)0.15In0.3Zn1.4S2 synthesized by precipitation and calcination. Chinese Journal of Catalysis, 2013, 34, 1926-1935.	6.9	22
58	Study on preparation of microwave absorbing MnOx/Al2O3 adsorbent and degradation of adsorbed glyphosate in MW–UV system. Chemical Engineering Journal, 2016, 298, 68-74.	6.6	22
59	Adsorption and one-step degradation-regeneration of 4-amino-5-hydroxynaphthalene-2,7-disulfonic acid using biochar-based BiFeO3 nanocomposites. Bioresource Technology, 2017, 245, 1103-1109.	4.8	20
60	Characterization of visible-light photo-Fenton reactions using Fe-doped ZnS (Fe _x -ZnS) mesoporous microspheres. Physical Chemistry Chemical Physics, 2018, 20, 18601-18609.	1.3	20
61	Adsorption of 4-chlorophenol by wheat straw biochar and its regeneration with persulfate under microwave irradiation. Journal of Environmental Chemical Engineering, 2021, 9, 105353.	3.3	20
62	Microwave-Enhanced Fenton Process for DMSO-Containing Wastewater. Environmental Engineering Science, 2010, 27, 271-280.	0.8	18
63	Species distribution of ferric hydrolysates in microwave enhanced Fenton-like process and possible mechanism. Journal of Hazardous Materials, 2010, 178, 293-297.	6.5	17
64	A potentially low-cost modified sawdust (MSD) effective for rapid Cr(<scp>vi</scp>) and As(<scp>v</scp>) removal from water. RSC Advances, 2014, 4, 49569-49576.	1.7	17
65	Efficient photocatalytic H ₂ production using visible-light irradiation and (CuAg) <i>_x</i> In _{2<i>x</i>} Zn _{2(1 â^ 2<i>x</i>)} S ₂ with tunable band gaps. International Journal of Energy Research, 2014, 38, 1513-1521.	pho ±o cata	lyst s 4
66	Effects of inorganic electron donors in photocatalytic hydrogen production over Ru/(CuAg)0.15In0.3Zn1.4S2 under visible light irradiation. Journal of Renewable and Sustainable Energy, 2014, 6, 033131.	0.8	14
67	Successive Extraction of As(V), Cu(II), and P(V) Ions from Water Using Surface Modified Ghee Residue Protein. ACS Sustainable Chemistry and Engineering, 2017, 5, 3742-3750.	3.2	14
68	Optimization and Degradation Mechanism of Photocatalytic Removal of Bisphenol A Using Zn _{0.9} Fe _{0.1} S Synthesized by Microwaveâ€assisted Method. Photochemistry and Photobiology, 2016, 92, 775-782.	1.3	12
69	Stability of BiFeO3 nanoparticles via microwave-assisted hydrothermal synthesis in Fenton-like process. Environmental Science and Pollution Research, 2017, 24, 24400-24408.	2.7	11
70	Microwave-Assisted Photocatalytic Degradation of Dimethyl Phthalate Over a Novel ZrO _{<i>x</i>} Catalyst. Environmental Engineering Science, 2010, 27, 1001-1007.	0.8	10
71	Synthesis of Co3O4-Bi2O3 using microwave-assisted method as the peroxymonosulfate activator for elimination of bisphenol A. Environmental Science and Pollution Research, 2018, 25, 4656-4666.	2.7	10
72	Effect of dielectric barrier discharge plasma on persulfate activation for rapid degradation of atrazine: Optimization, mechanism and energy consumption. Environmental Research, 2022, 212, 113287.	3.7	10

#	Article	IF	CITATIONS
73	Visible light responsive Fe–ZnS/nickel foam photocatalyst with enhanced photocatalytic activity and stability. RSC Advances, 2016, 6, 93370-93373.	1.7	7
74	One-pot microwave-assisted synthesis of Zn0.9Fe0.1S photocatalyst and its performance for the removal of bisphenol A. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 665-672.	2.0	6
75	Efficient degradation of 4-fluorophenol under dielectric barrier discharge plasma treatment using Cu/Fe-AO-PAN catalyst: Role of H2O2 production. Chemical Engineering Journal, 2021, 420, 127577.	6.6	6
76	Synthesis of Surfactant-Assisted C/Fe–FeVO ₄ Nanostructure: Characterization and Photocatalytic Degradation of Ciprofloxacin. Journal of Nanoscience and Nanotechnology, 2020, 20, 5636-5641.	0.9	4
77	Removal of 4-fluorophenol by dielectric barrier discharge plasma in three different structures: Comparison, optimization and mechanism. Journal of Environmental Chemical Engineering, 2021, 9, 105160.	3.3	3