
Rustem R Zairov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3209200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cloud point extraction of lanthanide(III) ions via use of Triton X-100 without and with water-soluble calixarenes as added chelating agents. Talanta, 2006, 68, 863-868.	5.5	52
2	High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones. Scientific Reports, 2017, 7, 40486.	3.3	34
3	Determination of fluoroquinolone antibiotics through the fluorescent response of Eu(III) based nanoparticles fabricated by layer-by-layer technique. Analytica Chimica Acta, 2013, 784, 65-71.	5.4	32
4	Structure impact in antenna effect of novel upper rim substituted tetra-1,3-diketone calix[4]arenes on Tb(III) green and Yb(III) NIR-luminescence. Tetrahedron, 2016, 72, 2447-2455.	1.9	30
5	An efficient Fe2O3/FeS heterostructures water oxidation catalyst. International Journal of Hydrogen Energy, 2022, 47, 22340-22347.	7.1	28
6	Silica-supported silver nanoparticles as an efficient catalyst for aromatic C–H alkylation and fluoroalkylation. Dalton Transactions, 2018, 47, 9608-9616.	3.3	27
7	Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability. Colloids and Surfaces B: Biointerfaces, 2017, 149, 243-249.	5.0	26
8	1,3-Diketone Calix[4]arene Derivatives—A New Type of Versatile Ligands for Metal Complexes and Nanoparticles. Molecules, 2021, 26, 1214.	3.8	25
9	Synthesis and photophysical properties of colloids fabricated by the layer-by-layer polyelectrolyte assembly onto Eu(III) complex as a core. Colloids and Surfaces B: Biointerfaces, 2011, 88, 490-496.	5.0	23
10	Unusual magnetic relaxation behavior of hydrophilic colloids based on gadolinium(III) octabutoxyphthalocyaninate. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	23
11	Hydration number: crucial role in nuclear magnetic relaxivity of Gd(III) chelate-based nanoparticles. Scientific Reports, 2017, 7, 14010.	3.3	22
12	One-pot embedding of iron oxides and Gd(III) complexes into silica nanoparticles—Morphology and aggregation effects on MRI dual contrasting ability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 60-67.	4.7	22
13	A facile synthetic route to convert Tb(iii) complexes of novel tetra-1,3-diketone calix[4]resorcinarene into hydrophilic luminescent colloids. New Journal of Chemistry, 2014, 38, 4130-4140.	2.8	20
14	Heterometallic Co ^{III} –Ln ^{III} (Ln = Gd, Tb, Dy) Complexes on a <i>p</i> â€6ulfonatothiacalix[4]arene Platform Exhibiting Redoxâ€6witchable Metalâ€ŧoâ€Metal Energy Transfer. European Journal of Inorganic Chemistry, 2008, 2008, 3957-3963.	2.0	19
15	Tuning magnetic relaxation properties of "hard cores―in core-shell colloids by modification of "soft shell― Colloids and Surfaces B: Biointerfaces, 2018, 162, 52-59.	5.0	19
16	Interfacial interactions of hard polyelectrolyte-stabilized luminescent colloids with substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 231-240.	4.7	18
17	Water transverse relaxation rates in aqueous dispersions of superparamagnetic iron oxide nanoclusters with diverse hydrophilic coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 450-458.	4.7	17
18	Paramagnetic Relaxation Enhancement in Hydrophilic Colloids Based on Gd(III) Complexes with Tetrathia- and Calix[4]arenes. Journal of Physical Chemistry C, 2020, 124, 4320-4329.	3.1	17

Rustem R Zairov

#	Article	IF	CITATIONS
19	The effect of the core morphology of Eu(III)-doped nanoparticles on the ion exchange versus energy transfer between Eu(III) in the core and Cu(II) ions at the interface. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	16
20	Polyelectrolyte-Stabilized Nanotemplates Based on Gd(III) Complexes with Macrocyclic Tetra-1,3-diketones as a Positive MR Contrast Agents. ChemistrySelect, 2016, 1, 1377-1383.	1.5	15
21	Green Fluorescent Terbium (III) Complex Doped Silica Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 3139.	4.1	15
22	Polystyrenesulfonate-coated nanoparticles with low cytotoxicity for determination of copper(II) via the luminescence of Tb(III) complexes with new calix[4]arene derivatives. Mikrochimica Acta, 2018, 185, 386.	5.0	13
23	Dual red-NIR luminescent Eu Yb heterolanthanide nanoparticles as promising basis for cellular imaging and sensing. Materials Science and Engineering C, 2019, 105, 110057.	7.3	12
24	Single Excited Dual Band Luminescent Hybrid Carbon Dots-Terbium Chelate Nanothermometer. Nanomaterials, 2021, 11, 3080.	4.1	12
25	Nanoparticles based on gadolinium(iii) and europium(iii) complexes for biovisualization. Russian Chemical Bulletin, 2016, 65, 1325-1331.	1.5	11
26	Silica nanoparticles with dual visible–NIR luminescence affected by silica confinement of Tb(III) and Yb(III) complexes for cellular imaging application. Journal of Materials Science, 2019, 54, 9140-9154.	3.7	11
27	Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303–313ÂK range. Scientific Reports, 2020, 10, 20541.	3.3	10
28	Silica-Supported Assemblage of Cull Ions with Carbon Dots for Self-Boosting and Glutathione-Induced ROS Generation. Coatings, 2022, 12, 97.	2.6	9
29	Extraction of lanthanum and gadolinium(III) at the cloud point using p-sulfonatocalyx[n]arenes as chelating agents. Colloid Journal, 2009, 71, 69-75.	1.3	8
30	Impact of polyelectrolyte coating in fluorescent response of Eu(III)-containing nanoparticles on small chelating anions including nucleotides. Surface and Coatings Technology, 2015, 271, 242-246.	4.8	8
31	Polyelectrolyte-coated ultra-small nanoparticles with Tb(III)-centered luminescence as cell labels with unusual charge effect on their cell internalization. Materials Science and Engineering C, 2019, 95, 166-173.	7.3	8
32	Polymethoxyphenyl-substituted [2-(5-chloro-2-hydroxy-4-methylphenyl)-2-phenylvinyl]phosphine oxides: Synthesis and complexation with Eu(TTA)3. Russian Journal of Organic Chemistry, 2014, 50, 547-551.	0.8	7
33	Trapping of Gd(III) Ions by Keplerate Polyanionic Nanocapsules in Water: A ¹ H Fast Field Cycling NMR Relaxometry Study. Journal of Physical Chemistry C, 2019, 123, 18095-18102.	3.1	7
34	Tailoring of silica nanoarchitecture to optimize Cu(2â^'x)S based image-guided chemodynamic therapy agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126996.	4.7	7
35	Catalytic combustion of heavy oil using γ-Fe2O3 nanocatalyst in in-situ combustion process. Journal of Petroleum Science and Engineering, 2022, 209, 109819.	4.2	7
36	Tb(III) complexes with nonyl-substituted calix[4]arenes as building blocks of hydrophilic luminescent mixed polydiacetylene-based aggregates. Journal of Molecular Liquids, 2018, 268, 463-470.	4.9	6

Rustem R Zairov

#	Article	IF	CITATIONS
37	Rational design of efficient nanosensor for glyphosate and temperature out of terbium complexes with 1,3-diketone calix[4]arenes. Sensors and Actuators B: Chemical, 2022, 350, 130845.	7.8	6
38	Role of PSS-based assemblies in stabilization of Eu and Sm luminescent complexes and their thermoresponsive luminescence. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112664.	5.0	6
39	Spectral-luminescence and magnetic relaxation properties of lanthanide—p-sulfonatothiacalix[4]arenes in aqueous solution of surfactants. Russian Chemical Bulletin, 2008, 57, 567-572.	1.5	4
40	The electrochemical behaviour of [Co(sep)]3+ bound with p-sulfonatothiacalix[4]arene and tetracarboxy-p-sulfonatocalix[4]arene in correlation with inclusive and non-inclusive binding modes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 69, 191-199.	1.6	3
41	Reactions of heteroaromatic chromophores with lanthanide complexes of p-sulfonatothiacalix[4]arene. Russian Chemical Bulletin, 2008, 57, 1905-1911.	1.5	2
42	Corrigendum to "Water transverse relaxation rates in aqueous dispersions of superparamagnetic iron oxide nanoclusters with diverse hydrophilic coating―[Colloids Surf. A: Physicochem. Eng. Asp. 443 (2014) 450–458]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 453, 176.	4.7	0