## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3209004/publications.pdf

Version: 2024-02-01



7 O THENC

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stable, highly-responsive and broadband photodetection based on large-area multilayered<br>WS <sub>2</sub> films grown by pulsed-laser deposition. Nanoscale, 2015, 7, 14974-14981.                                                             | 2.8  | 274       |
| 2  | Flexible, transparent and ultra-broadband photodetector based on large-area WSe <sub>2</sub> film<br>for wearable devices. Nanotechnology, 2016, 27, 225501.                                                                                    | 1.3  | 254       |
| 3  | All‣ayered 2D Optoelectronics: A Highâ€Performance UV–vis–NIR Broadband SnSe Photodetector with<br>Bi <sub>2</sub> Te <sub>3</sub> Topological Insulator Electrodes. Advanced Functional Materials,<br>2017, 27, 1701823.                       | 7.8  | 222       |
| 4  | Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Progress in Materials Science, 2019, 106, 100573.                                                                                         | 16.0 | 160       |
| 5  | Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Scientific Reports, 2015, 5, 11070.                                                                                             | 1.6  | 157       |
| 6  | Layered-material WS <sub>2</sub> /topological insulator<br>Bi <sub>2</sub> Te <sub>3</sub> heterostructure photodetector with ultrahigh responsivity in the<br>range from 370 to 1550 nm. Journal of Materials Chemistry C, 2016, 4, 7831-7840. | 2.7  | 135       |
| 7  | Promoting the Performance of Layered-Material Photodetectors by Alloy Engineering. ACS Applied<br>Materials & Interfaces, 2016, 8, 12915-12924.                                                                                                 | 4.0  | 133       |
| 8  | Electronic Reconstruction of α-Ag <sub>2</sub> WO <sub>4</sub> Nanorods for Visible-Light<br>Photocatalysis. ACS Nano, 2015, 9, 7256-7265.                                                                                                      | 7.3  | 131       |
| 9  | Promoting Photosensitivity and Detectivity of the Bi/Si Heterojunction Photodetector by Inserting a WS <sub>2</sub> Layer. ACS Applied Materials & Interfaces, 2015, 7, 26701-26708.                                                            | 4.0  | 98        |
| 10 | Self-Assembly High-Performance UV–vis–NIR Broadband β-In <sub>2</sub> Se <sub>3</sub> /Si<br>Photodetector Array for Weak Signal Detection. ACS Applied Materials & Interfaces, 2017, 9,<br>43830-43837.                                        | 4.0  | 95        |
| 11 | Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation. Nanoscale, 2018, 10, 2876-2886.                                                                                     | 2.8  | 94        |
| 12 | Stable, Fast UV–Vis–NIR Photodetector with Excellent Responsivity, Detectivity, and Sensitivity Based<br>on α-ln <sub>2</sub> Te <sub>3</sub> Films with a Direct Bandgap. ACS Applied Materials & Interfaces,<br>2016, 8, 20872-20879.         | 4.0  | 85        |
| 13 | Growth of centimeter-scale high-quality In <sub>2</sub> Se <sub>3</sub> films for transparent,<br>flexible and high performance photodetectors. Journal of Materials Chemistry C, 2016, 4, 8094-8103.                                           | 2.7  | 83        |
| 14 | A red phosphor Mg3Y2Ge3O12: Bi3+, Eu3+ with high brightness and excellent thermal stability of luminescence for white light-emitting diodes. Journal of Luminescence, 2019, 210, 202-209.                                                       | 1.5  | 83        |
| 15 | Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors. Applied<br>Materials Today, 2019, 15, 115-138.                                                                                                               | 2.3  | 82        |
| 16 | A Floating Sheet for Efficient Photocatalytic Water Splitting. Advanced Energy Materials, 2016, 6,<br>1600510.                                                                                                                                  | 10.2 | 74        |
| 17 | Centimeter-Scale Deposition of Mo <sub>0.5</sub> W <sub>0.5</sub> Se <sub>2</sub> Alloy Film for<br>High-Performance Photodetectors on Versatile Substrates. ACS Applied Materials & Interfaces,<br>2017, 9, 14920-14928.                       | 4.0  | 74        |
| 18 | Self-assembled and Pd decorated Zn2SnO4/ZnO wire-sheet shape nano-heterostructures networks hydrogen gas sensors. Sensors and Actuators B: Chemical, 2014, 195, 549-561.                                                                        | 4.0  | 71        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | 2D WS <sub>2</sub> Based Asymmetric Schottky Photodetector with High Performance. Advanced Electronic Materials, 2021, 7, 2000964.                                                                                         | 2.6 | 68        |
| 20 | 2D In <sub>2</sub> S <sub>3</sub> Nanoflake Coupled with Graphene toward High‣ensitivity and<br>Fastâ€Response Bulk‣ilicon Schottky Photodetector. Small, 2019, 15, e1904912.                                              | 5.2 | 67        |
| 21 | Tin dioxide quantum dots coupled with graphene for high-performance bulk-silicon Schottky photodetector. Materials Horizons, 2018, 5, 727-737.                                                                             | 6.4 | 61        |
| 22 | Synergistic Effect of Hybrid Multilayer In <sub>2</sub> Se <sub>3</sub> and Nanodiamonds for Highly Sensitive Photodetectors. ACS Applied Materials & amp; Interfaces, 2016, 8, 20200-20211.                               | 4.0 | 59        |
| 23 | Alloying-assisted phonon engineering of layered BilnSe <sub>3</sub> @nickel foam for efficient solar-enabled water evaporation. Nanoscale, 2017, 9, 16396-16403.                                                           | 2.8 | 59        |
| 24 | Self-Powered SnS <sub>1–<i>x</i></sub> Se <i><sub>x</sub></i> Alloy/Silicon Heterojunction<br>Photodetectors with High Sensitivity in a Wide Spectral Range. ACS Applied Materials & Interfaces,<br>2019, 11, 40222-40231. | 4.0 | 58        |
| 25 | Self-Assembly of the Lateral In <sub>2</sub> Se <sub>3</sub> /CuInSe <sub>2</sub> Heterojunction for Enhanced Photodetection. ACS Applied Materials & amp; Interfaces, 2017, 9, 7288-7296.                                 | 4.0 | 57        |
| 26 | Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures. Sensors and Actuators B: Chemical, 2017, 244, 344-356.                                            | 4.0 | 54        |
| 27 | Strain engineering coupled with optical regulation towards a high-sensitivity<br>In <sub>2</sub> S <sub>3</sub> photodetector. Materials Horizons, 2020, 7, 1427-1435.                                                     | 6.4 | 53        |
| 28 | Non-layered 2D materials toward advanced photoelectric devices: progress and prospects. Materials Horizons, 2020, 7, 2185-2207.                                                                                            | 6.4 | 47        |
| 29 | Light-controlled C <sub>2</sub> H <sub>2</sub> gas sensing based on Au–ZnO nanowires with plasmon-enhanced sensitivity at room temperature. Journal of Materials Chemistry C, 2015, 3, 7067-7074.                          | 2.7 | 44        |
| 30 | Unique and Tunable Photodetecting Performance for Two-Dimensional Layered<br>MoSe <sub>2</sub> /WSe <sub>2</sub> p–n Junction on the 4H-SiC Substrate. ACS Applied Materials<br>& Interfaces, 2019, 11, 19277-19285.       | 4.0 | 44        |
| 31 | An asymmetric contact-induced self-powered 2D In <sub>2</sub> S <sub>3</sub> photodetector towards high-sensitivity and fast-response. Nanoscale, 2020, 12, 7196-7205.                                                     | 2.8 | 44        |
| 32 | UV–Vis-NIR photodetector based on monolayer MoS2. Materials Letters, 2019, 237, 298-302.                                                                                                                                   | 1.3 | 41        |
| 33 | Ultrasensitive 2D/3D Heterojunction Multicolor Photodetectors: A Synergy of Laterally and<br>Vertically Aligned 2D Layered Materials. ACS Applied Materials & Interfaces, 2018, 10, 38166-38172.                           | 4.0 | 39        |
| 34 | Thicknessâ€Dependent Optical Properties and Inâ€Plane Anisotropic Raman Response of the 2D βâ€In 2 S 3.<br>Advanced Optical Materials, 2019, 7, 1901085.                                                                   | 3.6 | 39        |
| 35 | Non‣ayered Te/In <sub>2</sub> S <sub>3</sub> Tunneling Heterojunctions with Ultrahigh<br>Photoresponsivity and Fast Photoresponse. Small, 2022, 18, e2200445.                                                              | 5.2 | 38        |
| 36 | In2O3 Nanotower Hydrogen Gas Sensors Based on Both Schottky Junction and Thermoelectronic Emission. Nanoscale Research Letters, 2015, 10, 1002.                                                                            | 3.1 | 37        |

| #  | Article                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Graphene/In <sub>2</sub> S <sub>3</sub> van der Waals Heterostructure for Ultrasensitive<br>Photodetection. ACS Photonics, 2018, 5, 4912-4919.                                                                                                                                                        | 3.2 | 36        |
| 38 | Allâ€Dielectric Nanostructure Fabry–Pérotâ€Enhanced Mie Resonances Coupled with Photogain<br>Modulation toward Ultrasensitive In <sub>2</sub> S <sub>3</sub> Photodetector. Advanced<br>Functional Materials, 2021, 31, 2007987.                                                                      | 7.8 | 34        |
| 39 | Novel two-dimensional monoelemental and ternary materials: growth, physics and application.<br>Nanophotonics, 2020, 9, 2147-2168.                                                                                                                                                                     | 2.9 | 29        |
| 40 | Out of plane stacking of InSe-based heterostructures towards high performance electronic and optoelectronic devices using a graphene electrode. Journal of Materials Chemistry C, 2018, 6, 12509-12517.                                                                                               | 2.7 | 28        |
| 41 | Epitaxial growth of large-scale In <sub>2</sub> S <sub>3</sub> nanoflakes and the construction of a high performance In <sub>2</sub> 3/Si photodetector. Journal of Materials Chemistry C, 2019, 7, 12104-12113.                                                                                      | 2.7 | 26        |
| 42 | Universal Strategy Integrating Strain and Interface Engineering to Drive Highâ€Performance 2D Material<br>Photodetectors. Advanced Optical Materials, 2021, 9, 2100450.                                                                                                                               | 3.6 | 26        |
| 43 | A flexible, transparent and high-performance gas sensor based on layer-materials for wearable<br>technology. Nanotechnology, 2017, 28, 415501.                                                                                                                                                        | 1.3 | 25        |
| 44 | Fabrication of a high performance Znln <sub>2</sub> S <sub>4</sub> /Si heterostructure photodetector array for weak signal detection. Journal of Materials Chemistry C, 2018, 6, 12928-12939.                                                                                                         | 2.7 | 25        |
| 45 | Self-assembly In2Se3/SnSe2 heterostructure array with suppressed dark current and enhanced photosensitivity for weak signal. Science China Materials, 2020, 63, 1560-1569.                                                                                                                            | 3.5 | 24        |
| 46 | A solution-fabricated tellurium/silicon mixed-dimensional van der Waals heterojunction for self-powered photodetectors. Journal of Materials Chemistry C, 2022, 10, 7283-7293.                                                                                                                        | 2.7 | 24        |
| 47 | Controllable growth of large-area atomically thin ReS2 films and their thickness-dependent optoelectronic properties. Applied Physics Letters, 2019, 114, .                                                                                                                                           | 1.5 | 23        |
| 48 | Vertically stacked Bi <sub>2</sub> Se <sub>3</sub> /MoTe <sub>2</sub> heterostructure with large band offsets for nanoelectronics. Nanoscale, 2021, 13, 15403-15414.                                                                                                                                  | 2.8 | 23        |
| 49 | High performance tin diselenide photodetectors dependent on thickness: a vertical graphene sandwiched device and interfacial mechanism. Nanoscale, 2019, 11, 13309-13317.                                                                                                                             | 2.8 | 22        |
| 50 | Promoting the Performance of 2D Material Photodetectors by Dielectric Engineering. Small Methods, 2022, 6, e2101046.                                                                                                                                                                                  | 4.6 | 20        |
| 51 | An Innovative Postdeposition Annealing Approach Producing Centimeterâ€Scale<br>In <sub>2</sub> O <sub>3</sub> /In <sub>2</sub> (TeO <sub>3</sub> ) <sub>3</sub> Bulk Heterojunction<br>Thin Film for Roomâ€Temperature Persistent Photoconductivity. Advanced Optical Materials, 2017, 5,<br>1600908. | 3.6 | 19        |
| 52 | Hybrid 1D/2D heterostructure with electronic structure engineering toward high-sensitivity and polarization-dependent photodetector. Science China Materials, 2022, 65, 732-740.                                                                                                                      | 3.5 | 19        |
| 53 | Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level. Nanoscale, 2016, 8, 15001-15007.                                                                                                                                                             | 2.8 | 18        |
| 54 | Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology. Journal of Materials Chemistry C, 2020, 8, 4988-5014.                                                                                                                                          | 2.7 | 18        |

| #  | Article                                                                                                                                                                                                                                             | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Polarityâ€&witchable and Selfâ€Driven Photoâ€Response Based on Vertically Stacked Typeâ€III<br>GeSe/SnS <sub>2</sub> Heterojunction. Advanced Materials Interfaces, 2022, 9, .                                                                      | 1.9 | 18        |
| 56 | Robust Deposition of Subâ€Millimeter WSe <sub>2</sub> Drive Ultrasensitive Gateâ€Tunable 2D Material<br>Photodetectors. Advanced Optical Materials, 2022, 10, .                                                                                     | 3.6 | 18        |
| 57 | Field emission properties and growth mechanism of In2O3 nanostructures. Nanoscale Research<br>Letters, 2014, 9, 111.                                                                                                                                | 3.1 | 17        |
| 58 | Tunable Polarity Behavior and High-Performance Photosensitive Characteristics in Schottky-Barrier<br>Field-Effect Transistors Based on Multilayer WS <sub>2</sub> . ACS Applied Materials & Interfaces,<br>2018, 10, 2745-2751.                     | 4.0 | 17        |
| 59 | Large-area ReS2 monolayer films on flexible substrate for SERS based molecular sensing with strong fluorescence quenching. Applied Surface Science, 2021, 542, 148757.                                                                              | 3.1 | 17        |
| 60 | Pulsedâ€Laserâ€Deposition Fabricated ZnIn <sub>2</sub> S <sub>4</sub> Photodetectors with Excellent<br>ON/OFF Switching Characteristics toward Highâ€Temperatureâ€Resistant Photodetection Applications.<br>Advanced Optical Materials, 2022, 10, . | 3.6 | 16        |
| 61 | Self-driven SnS <sub>1â^'<i>x</i></sub> Se <sub><i>x</i></sub> alloy/GaAs heterostructure based unique polarization sensitive photodetectors. Nanoscale, 2021, 13, 15193-15204.                                                                     | 2.8 | 14        |
| 62 | Optical Resonance Coupled with Electronic Structure Engineering toward High‣ensitivity<br>Photodetectors. Advanced Optical Materials, 2021, 9, 2101374.                                                                                             | 3.6 | 12        |
| 63 | Enhanced Raman scattering on two-dimensional palladium diselenide. Nanoscale, 2022, 14, 4181-4187.                                                                                                                                                  | 2.8 | 12        |
| 64 | Circular SnS <sub>0.5</sub> Se <sub>0.5</sub> Nanosheets with Highly Anisotropic Performance for Nanoelectronics. ACS Applied Nano Materials, 2020, 3, 10270-10283.                                                                                 | 2.4 | 10        |
| 65 | Deep insights into interface engineering by buffer layer for efficient perovskite solar cells: a<br>first-principles study. Science China Materials, 2020, 63, 1588-1596.                                                                           | 3.5 | 10        |
| 66 | High-quality two-dimensional tellurium flakes grown by high-temperature vapor deposition. Journal of Materials Chemistry C, 2021, 9, 14394-14400.                                                                                                   | 2.7 | 10        |
| 67 | A reasonably designed 2D WS <sub>2</sub> and CdS microwire heterojunction for high performance photoresponse. Nanoscale, 2021, 13, 5660-5669.                                                                                                       | 2.8 | 10        |
| 68 | 3D resonator based on luminescence enhanced by both polarized, size-dependent whispering gallery<br>modes and Fabry–Pérot waveguide modes in individual ZnO micro- and nanonails. Nanoscale, 2014, 6,<br>5338.                                      | 2.8 | 9         |
| 69 | Field emission and growth mechanism of ZnO microrods array with nanospikes fabricated by thermal evaporation. Materials Letters, 2016, 170, 210-212.                                                                                                | 1.3 | 9         |
| 70 | Photocatalytic Degradation of Tobacco Tar Using CsPbBr3 Quantum Dots Modified Bi2WO6 Composite<br>Photocatalyst. Nanomaterials, 2021, 11, 2422.                                                                                                     | 1.9 | 9         |
| 71 | <i>In situ</i> integration of Te/Si 2D/3D heterojunction photodetectors toward UV-vis-IR ultra-broadband photoelectric technologies. Nanoscale, 2022, 14, 6228-6238.                                                                                | 2.8 | 9         |
| 72 | Field emission and photoluminescence of ZnO nanocombs. Applied Physics A: Materials Science and Processing, 2013, 113, 549-556.                                                                                                                     | 1.1 | 7         |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Enhancement of exciton emission in WS <sub>2</sub> based on the Kerker effect from the mode engineering of individual Si nanostripes. Nanoscale Horizons, 2020, 5, 1368-1377.                                             | 4.1 | 7         |
| 74 | Whispering gallery and Fabry–Pérot modes enhanced luminescence from individual ZnO micro<br>mushroom. Journal of Applied Physics, 2013, 113, 034313.                                                                      | 1.1 | 6         |
| 75 | Nonlayered In <sub>2</sub> S <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub> /CsPbBr <sub>3</sub><br>Quantum Dot Heterojunctions for Sensitive and Stable Photodetectors. ACS Applied Nano Materials,<br>2021, 4, 5106-5114. | 2.4 | 6         |
| 76 | A New Wide Bandgap Semiconductor: Carbyne Nanocrystals. Advanced Functional Materials, 2021, 31, 2104254.                                                                                                                 | 7.8 | 6         |
| 77 | Etching-free high-throughput intersectional nanofabrication of diverse optical nanoantennas for nanoscale light manipulation. Journal of Colloid and Interface Science, 2022, 622, 950-959.                               | 5.0 | 6         |
| 78 | High performance DUV-visible 4H-SiC-based multilayered SnS <sub>2</sub> dual-mode photodetectors.<br>Journal of Materials Chemistry C, 2021, 9, 15662-15670.                                                              | 2.7 | 5         |
| 79 | An artificial optoelectronic nociceptor based on In <sub>2</sub> S <sub>3</sub> memristor. Journal Physics D: Applied Physics, 2022, 55, 125401.                                                                          | 1.3 | 4         |
| 80 | Weyl-Semimetal TalrTe <sub>4</sub> /Si Nanostructures for Self-Powered Schottky Photodetectors.<br>ACS Applied Nano Materials, 2022, 5, 6523-6531.                                                                        | 2.4 | 4         |
| 81 | Device-Scaled Controlled Crumpling of MXene-Based Ultrathin Supercapacitors as Stretchable Power<br>Sources. ACS Applied Energy Materials, 2022, 5, 4296-4306.                                                            | 2.5 | 3         |
| 82 | Reâ€Stickable Yarn Supercapacitors with Vaper Phase Polymerized Multiâ€Layered Polypyrrole Electrodes<br>for Smart Garments. Macromolecular Rapid Communications, 0, , 2200347.                                           | 2.0 | 2         |
| 83 | Fabrication and Hydrogen Sensing Property of In <sub>2</sub> O <sub>3 </sub> Nanotowers. Advanced<br>Materials Research, 2013, 834-836, 913-916.                                                                          | 0.3 | 1         |
| 84 | Self-Assembled Alcohol Sensor of In <sub>2</sub> O <sub>3 </sub> Nanorods. Advanced Materials<br>Research, 2013, 834-836, 46-49.                                                                                          | 0.3 | 0         |