J Mieke Kleijn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3208861/publications.pdf

Version: 2024-02-01

516561 377752 1,177 41 16 34 citations g-index h-index papers 43 43 43 1943 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquatic Toxicology, 2017, 183, 11-20.	1.9	298
2	Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Research, 2015, 73, 216-230.	5.3	200
3	Double Layer of a Gold Electrode Probed by AFM Force Measurements. Langmuir, 2003, 19, 1133-1139.	1.6	79
4	Amphifunctionally Electrified Interfaces:Â Coupling of Electronic and Ionic Surface-Charging Processes. Langmuir, 2001, 17, 7573-7581.	1.6	70
5	Ultrastrong Anchoring Yet Barrierâ€Free Adsorption of Composite Microgels at Liquid Interfaces. Advanced Materials Interfaces, 2014, 1, 1300121.	1.9	54
6	Encapsulation of GFP in Complex Coacervate Core Micelles. Biomacromolecules, 2015, 16, 1542-1549.	2.6	53
7	Uptake and release kinetics of lysozyme in and from an oxidized starch polymer microgel. Soft Matter, 2011, 7, 10377.	1.2	37
8	Adsorption of Charged Macromolecules at a Gold Electrode. Langmuir, 2004, 20, 9703-9713.	1.6	34
9	Coverage and Disruption of Phospholipid Membranes by Oxide Nanoparticles. Langmuir, 2014, 30, 14581-14590.	1.6	32
10	Adsorption of a linear polyelectrolyte on a gold electrode. Physical Chemistry Chemical Physics, 2003, 5, 4258.	1.3	24
11	Charge-driven and reversible assembly of ultra-dense polymer brushes: formation and antifouling properties of a zipper brush. Soft Matter, 2010, 6, 2499.	1.2	23
12	Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling. Journal of Chemical Physics, 2014, 140, 065102.	1.2	19
13	One-step mild biorefinery of functional biomolecules from microalgae extracts. Reaction Chemistry and Engineering, 2018, 3, 182-187.	1.9	19
14	Electrode Surface Potential-Driven Protein Adsorption and Desorption through Modulation of Electrostatic, van der Waals, and Hydration Interactions. Langmuir, 2021, 37, 6549-6555.	1.6	19
15	On the edge energy of lipid membranes and the thermodynamic stability of pores. Journal of Chemical Physics, 2015, 142, 034101.	1.2	17
16	3D biofilm visualization and quantification on granular bioanodes with magnetic resonance imaging. Water Research, 2019, 167, 115059 .	5.3	17
17	Complex Coacervate Core Micelles with Spectroscopic Labels for Diffusometric Probing of Biopolymer Networks. Langmuir, 2015, 31, 12635-12643.	1.6	15
18	Balancing Enzyme Encapsulation Efficiency and Stability in Complex Coacervate Core Micelles. Langmuir, 2020, 36, 8494-8502.	1.6	15

#	Article	IF	CITATIONS
19	Effect of enzymatic cross-linking of naringenin-loaded \hat{l}^2 -casein micelles on their release properties and fate in in vitro digestion. Food Chemistry, 2021, 352, 129400.	4.2	14
20	Bending Moduli and Spontaneous Curvature of the Monolayer in a Surfactant Bilayer. Journal of Physical Chemistry B, 2005, 109, 14251-14256.	1.2	13
21	Molecular modeling of proteinlike inclusions in lipid bilayers: Lipid-mediated interactions. Physical Review E, 2010, 81, 021915.	0.8	13
22	Colorful Packages: Encapsulation of Fluorescent Proteins in Complex Coacervate Core Micelles. International Journal of Molecular Sciences, 2017, 18, 1557.	1.8	11
23	Self-limiting aggregation of phospholipid vesicles. Soft Matter, 2020, 16, 2379-2389.	1.2	11
24	Interaction of Silica Nanoparticles with Phospholipid Membranes. Chemistry Letters, 2012, 41, 1322-1324.	0.7	10
25	Electroactive behavior assessment of poly(acrylic acid)â€graphene oxide composite hydrogel in the detection of cadmium. Journal of Applied Polymer Science, 2014, 131, .	1.3	10
26	An acidic model pro-peptide affects the secondary structure, membrane interactions and antimicrobial activity of a crotalicidin fragment. Scientific Reports, 2018, 8, 11127.	1.6	10
27	Formation and ripening of alginate-like exopolymer gel layers during and after membrane filtration. Water Research, 2021, 195, 116959.	5.3	10
28	Monitoring the development of a microbial electrolysis cell bioanode using an electrochemical quartz crystal microbalance. Bioelectrochemistry, 2010, 79, 272-275.	2.4	9
29	Competition between surface adsorption and folding of fibril-forming polypeptides. Physical Review E, 2015, 91, 022711.	0.8	7
30	A Hybrid Monte Carlo Self-Consistent Field Model of Physical Gels of Telechelic Polymers. Journal of Chemical Theory and Computation, 2018, 14, 6532-6543.	2.3	6
31	Complex coacervates formed across liquid interfaces: A self-consistent field analysis. Advances in Colloid and Interface Science, 2017, 239, 17-30.	7.0	5
32	Structural and mechanical parameters of lipid bilayer membranes using a lattice refined self-consistent field theory. Physical Chemistry Chemical Physics, 2021, 23, 5152-5175.	1.3	4
33	Self-consistent field modeling of mesomorphic phase changes of monoolein and phospholipids in response to additives. Physical Chemistry Chemical Physics, 2021, 23, 14093-14108.	1.3	4
34	Rheological characterisation of alginate-like exopolymer gels crosslinked with calcium. Water Research, 2021, 207, 117835.	5.3	4
35	Enhanced stability of complex coacervate core micelles following different core-crosslinking strategies. Soft Matter, 2022, , .	1.2	4
36	Nanoparticle-Templated Formation and Growth Mechanism of Curved Protein Polymer Fibrils. Biomacromolecules, 2016, 17, 2392-2398.	2.6	2

J Mieke Kleijn

#	Article	IF	CITATIONS
37	Step-wise linking of vesicles by combining reversible and irreversible linkers – towards total control on vesicle aggregate sizes. Soft Matter, 2020, 16, 6773-6783.	1.2	2
38	Charged Polypeptide Tail Boosts the Salt Resistance of Enzyme-Containing Complex Coacervate Micelles. Biomacromolecules, 2022, 23, 1195-1204.	2.6	2
39	Molecular Modelling of Biological Membranes: Structure and Permeation Properties. , 2004, , 15-111.		1
40	Ternary Fluid Mixture Confined between Surfaces: Surface-induced Phase Transition and Long-range Oscillatory Forces. Chemistry Letters, 2012, 41, 1113-1115.	0.7	0
41	Virtual Special Issue in memory of Hans Lyklema (1930–2017). Advances in Colloid and Interface Science, 2020, 282, 102201.	7.0	0