
Thomas M Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3208838/publications.pdf Version: 2024-02-01

Τησμνς Μ Ρετέρς

#	Article	IF	CITATIONS
1	Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Science and Technology, 2016, 50, 462-473.	1.5	146
2	Evaluation of the Alphasense optical particle counter (OPC-N2) and the Grimm portable aerosol spectrometer (PAS-1.108). Aerosol Science and Technology, 2016, 50, 1352-1365.	1.5	140
3	Concentration measurement and counting efficiency of the aerodynamic particle sizer 3321. Journal of Aerosol Science, 2003, 34, 627-634.	1.8	123
4	Single-Particle SEM-EDX Analysis of Iron-Containing Coarse Particulate Matter in an Urban Environment: Sources and Distribution of Iron within Cleveland, Ohio. Environmental Science & Technology, 2012, 46, 4331-4339.	4.6	119
5	Airborne Monitoring to Distinguish Engineered Nanomaterials from Incidental Particles for Environmental Health and Safety. Journal of Occupational and Environmental Hygiene, 2008, 6, 73-81.	0.4	112
6	Counting and particle transmission efficiency of the aerodynamic particle sizer. Journal of Aerosol Science, 2005, 36, 1400-1408.	1.8	106
7	Characterization and Control of Airborne Particles Emitted During Production of Epoxy/Carbon Nanotube Nanocomposites. Journal of Occupational and Environmental Hygiene, 2011, 8, 86-92.	0.4	106
8	Evaluation of consumer monitors to measure particulate matter. Journal of Aerosol Science, 2017, 107, 123-133.	1.8	95
9	Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air–liquid interface compared with in vivo assessment. Toxicology in Vitro, 2015, 29, 502-511.	1.1	92
10	The Mapping of Fine and Ultrafine Particle Concentrations in an Engine Machining and Assembly Facility. Annals of Occupational Hygiene, 2005, 50, 249-57.	1.9	90
11	New Methods for Personal Exposure Monitoring for Airborne Particles. Current Environmental Health Reports, 2015, 2, 399-411.	3.2	90
12	Comparison of the Grimm 1.108 and 1.109 Portable Aerosol Spectrometer to the TSI 3321 Aerodynamic Particle Sizer for Dry Particles. Annals of Occupational Hygiene, 2006, 50, 843-50.	1.9	85
13	Ultrafine and Respirable Particles in an Automotive Grey Iron Foundry. Annals of Occupational Hygiene, 2007, 52, 9-21.	1.9	85
14	Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials. Journal of Nanoparticle Research, 2013, 15, 1504.	0.8	82
15	Relationships Among Particle Number, Surface Area, and Respirable Mass Concentrations in Automotive Engine Manufacturing. Journal of Occupational and Environmental Hygiene, 2008, 6, 19-31.	0.4	73
16	Federal Reference and Equivalent Methods for Measuring Fine Particulate Matter. Aerosol Science and Technology, 2001, 34, 457-464.	1.5	72
17	Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials. Toxicology in Vitro, 2013, 27, 164-173.	1.1	69
18	Satellite Remote Sensing for Developing Time and Space Resolved Estimates of Ambient Particulate in Cleveland, OH. Aerosol Science and Technology, 2011, 45, 1090-1108.	1.5	62

#	Article	IF	CITATIONS
19	Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide. Journal of Occupational and Environmental Hygiene, 2018, 15, 87-98.	0.4	54
20	Characterization and Mapping of Very Fine Particles in an Engine Machining and Assembly Facility. Journal of Occupational and Environmental Hygiene, 2007, 4, 341-351.	0.4	52
21	A Task-Specific Assessment of Swine Worker Exposure to Airborne Dust. Journal of Occupational and Environmental Hygiene, 2009, 7, 7-13.	0.4	49
22	A Personal Nanoparticle Respiratory Deposition (NRD) Sampler. Environmental Science & Technology, 2011, 45, 6483-6490.	4.6	49
23	Evaluation of airborne particle emissions from commercial products containing carbon nanotubes. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	47
24	Comparison of the DiSCmini Aerosol Monitor to a Handheld Condensation Particle Counter and a Scanning Mobility Particle Sizer for Submicrometer Sodium Chloride and Metal Aerosols. Journal of Occupational and Environmental Hygiene, 2013, 10, 250-258.	0.4	45
25	Chemical Characterization of Outdoor and Subway Fine (PM2.5–1.0) and Coarse (PM10–2.5) Particulate Matter in Seoul (Korea) by Computer-Controlled Scanning Electron Microscopy (CCSEM). International Journal of Environmental Research and Public Health, 2015, 12, 2090-2104.	1.2	45
26	Passive sampling to capture spatial variability in PM10–2.5. Atmospheric Environment, 2008, 42, 746-756.	1.9	44
27	Passive measurement of coarse particulate matter,. Journal of Aerosol Science, 2008, 39, 156-167.	1.8	44
28	Comparison and Combination of Aerosol Size Distributions Measured with a Low Pressure Impactor, Differential Mobility Particle Sizer, Electrical Aerosol Analyzer, and Aerodynamic Particle Sizer. Aerosol Science and Technology, 1993, 19, 396-405.	1.5	41
29	Design and Calibration of the EPA PM2.5 Well Impactor Ninety-Six (WINS). Aerosol Science and Technology, 2001, 34, 389-397.	1.5	41
30	Low-Cost, Distributed Environmental Monitors for Factory Worker Health. Sensors, 2018, 18, 1411.	2.1	41
31	A Shelter to Protect a Passive Sampler for Coarse Particulate Matter, PM _{10 â^' 2.5} . Aerosol Science and Technology, 2008, 42, 299-309.	1.5	38
32	Elevated Concentrations of Lead in Particulate Matter on the Neighborhood-Scale in Delhi, India As Determined by Single Particle Analysis. Environmental Science & Technology, 2016, 50, 4961-4970.	4.6	34
33	Particle Deposition in Industrial Duct Bends. Annals of Occupational Hygiene, 2004, 48, 483-90.	1.9	30
34	On the Modification of the Low Flow-Rate PM10Dichotomous Sampler Inlet. Aerosol Science and Technology, 2001, 34, 407-415.	1.5	25
35	Use of a Condensation Particle Counter and an Optical Particle Counter to Assess the Number Concentration of Engineered Nanoparticles. Journal of Occupational and Environmental Hygiene, 2010, 7, 535-545.	0.4	24
36	Passive sampling to capture the spatial variability of coarse particles by composition in Cleveland, OH. Atmospheric Environment, 2015, 105, 61-69.	1.9	24

#	Article	IF	CITATIONS
37	Accurate quantification of tio ₂ nanoparticles collected on air filters using a microwave-assisted acid digestion method. Journal of Occupational and Environmental Hygiene, 2016, 13, 30-39.	0.4	22
38	Physicochemical properties of air discharge-generated manganese oxide nanoparticles: comparison to welding fumes. Environmental Science: Nano, 2018, 5, 696-707.	2.2	22
39	Wintertime Factors Affecting Contaminant Distribution in a Swine Farrowing Room. Journal of Occupational and Environmental Hygiene, 2013, 10, 287-296.	0.4	21
40	Use of Recirculating Ventilation With Dust Filtration to Improve Wintertime Air Quality in a Swine Farrowing Room. Journal of Occupational and Environmental Hygiene, 2015, 12, 635-646.	0.4	21
41	Mapping Occupational Hazards with a Multi-sensor Network in a Heavy-Vehicle Manufacturing Facility. Annals of Work Exposures and Health, 2019, 63, 280-293.	0.6	20
42	Distribution of Particle and Gas Concentrations in Swine Gestation Confined Animal Feeding Operations. Annals of Occupational Hygiene, 2012, 56, 1080-90.	1.9	19
43	Evaluation of a Low-Cost Aerosol Sensor to Assess Dust Concentrations in a Swine Building. Annals of Occupational Hygiene, 2016, 60, 597-607.	1.9	19
44	Measurement of particle deposition in industrial ducts. Journal of Aerosol Science, 2004, 35, 529-540.	1.8	18
45	Assessment of Swine Worker Exposures to Dust and Endotoxin during Hog Load-Out and Power Washing. Annals of Occupational Hygiene, 2012, 56, 843-51.	1.9	18
46	Sensor Selection to Improve Estimates of Particulate Matter Concentration from a Low-Cost Network. Sensors, 2018, 18, 3008.	2.1	18
47	Field Performance of PM2.5 Federal Reference Method Samplers. Aerosol Science and Technology, 2001, 34, 433-443.	1.5	17
48	Seasonal effects in land use regression models for nitrogen dioxide, coarse particulate matter, and gaseous ammonia in Cleveland, Ohio. Atmospheric Pollution Research, 2012, 3, 352-361.	1.8	17
49	Modeled Effectiveness of Ventilation with Contaminant Control Devices on Indoor Air Quality in a Swine Farrowing Facility. Journal of Occupational and Environmental Hygiene, 2014, 11, 434-449.	0.4	17
50	Toxicity assessment of air-delivered particle-bound polybrominated diphenyl ethers. Toxicology, 2014, 317, 31-39.	2.0	17
51	Identifying determinants of noise in a medical intensive care unit. Journal of Occupational and Environmental Hygiene, 2018, 15, 810-817.	0.4	17
52	Estimating personal exposures from a multi-hazard sensor network. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 1013-1022.	1.8	17
53	Use of the Aerodynamic Particle Sizer to Measure Ambient PM10–2.5: The Coarse Fraction of PM10. Journal of the Air and Waste Management Association, 2006, 56, 411-416.	0.9	16
54	Airborne Nanoparticle Concentrations in the Manufacturing of Polytetrafluoroethylene (PTFE) Apparel. Journal of Occupational and Environmental Hygiene, 2011, 8, 139-146.	0.4	16

#	Article	IF	CITATIONS
55	Simulation of air quality and cost to ventilate swine farrowing facilities in winter. Computers and Electronics in Agriculture, 2013, 98, 136-145.	3.7	16
56	Physicochemical Characterization of Simulated Welding Fumes from a Spark Discharge System. Aerosol Science and Technology, 2014, 48, 768-776.	1.5	16
57	Comparison of Respirable Mass Concentrations Measured by a Personal Dust Monitor and a Personal DataRAM to Gravimetric Measurements. Annals of Work Exposures and Health, 2018, 62, 62-71.	0.6	16
58	An inexpensive sensor for noise. Journal of Occupational and Environmental Hygiene, 2018, 15, 448-454.	0.4	16
59	Performance of Passive Samplers Analyzed by Computer-Controlled Scanning Electron Microscopy to Measure PM _{10–2.5} . Environmental Science & Technology, 2016, 50, 7581-7589.	4.6	14
60	Sources of error and variability in particulate matter sensor network measurements. Journal of Occupational and Environmental Hygiene, 2019, 16, 564-574.	0.4	14
61	Particle Collection Efficiency for Nylon Mesh Screens. Aerosol Science and Technology, 2012, 46, 214-221.	1.5	13
62	Evaluation of PM2.5 Size Selectors Used in Speciation Samplers. Aerosol Science and Technology, 2001, 34, 422-429.	1.5	12
63	Efficacy of Paired Electrochemical Sensors for Measuring Ozone Concentrations. Journal of Occupational and Environmental Hygiene, 2019, 16, 179-190.	0.4	12
64	A Granular Bed for Use in a Nanoparticle Respiratory Deposition Sampler. Aerosol Science and Technology, 2015, 49, 179-187.	1.5	11
65	Size, composition, morphology, and health implications of airborne incidental metal-containing nanoparticles. Journal of Occupational and Environmental Hygiene, 2019, 16, 387-399.	0.4	11
66	Lung function of primary cooks using LPG or biomass and the effect of particulate matter on airway epithelial barrier integrity. Environmental Research, 2020, 189, 109888.	3.7	11
67	Influence of Analysis Methods on Interpretation of Hazard Maps. Annals of Occupational Hygiene, 2012, 57, 558-70.	1.9	10
68	Evaluation of a Shaker Dust Collector for Use in a Recirculating Ventilation System. Journal of Occupational and Environmental Hygiene, 2015, 12, D201-D210.	0.4	10
69	Porous polyurethane foam for use as a particle collection substrate in a nanoparticle respiratory deposition sampler. Aerosol Science and Technology, 2016, 50, 497-506.	1.5	10
70	Update to "Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site―regarding the use of aerodynamic particle sizers in marine environments. Journal of Geophysical Research, 2007, 112, .	3.3	9
71	Assessment of Interventions to Improve Air Quality in a Livestock Building. Journal of Agricultural Safety and Health, 2017, 23, 247-263.	0.3	9
72	Analysis of Sampling Line Bias on Respirable Mass Measurement. Journal of Occupational and Environmental Hygiene, 2003, 18, 458-465.	0.5	8

#	Article	IF	CITATIONS
73	Reduction of Biomechanical and Welding Fume Exposures in Stud Welding. Annals of Occupational Hygiene, 2016, 60, 387-401.	1.9	8
74	Optimizing a Sensor Network with Data from Hazard Mapping Demonstrated in a Heavy-Vehicle Manufacturing Facility. Annals of Work Exposures and Health, 2018, 62, 547-558.	0.6	8
75	Submicrometer Aerosol Generator Development for the U.S. Environmental Protection Agency's Human Exposure Laboratory. Aerosol Science and Technology, 1994, 20, 51-61.	1.5	7
76	A polydisperse aerosol inhalation system designed for human studies. Journal of Aerosol Science, 2002, 33, 1433-1446.	1.8	7
77	Design and Evaluation of a Personal Diffusion Battery. Aerosol Science and Technology, 2013, 47, 435-443.	1.5	7
78	Community airborne particulate matter from mining for sand used as hydraulic fracturing proppant. Science of the Total Environment, 2017, 609, 1475-1482.	3.9	7
79	Particle Concentrations in Occupational Settings Measured with a Nanoparticle Respiratory Deposition (NRD) Sampler. Annals of Work Exposures and Health, 2018, 62, 699-710.	0.6	7
80	Indoor Particulate Matter From Smoker Homes Induces Bacterial Growth, Biofilm Formation, and Impairs Airway Antimicrobial Activity. A Pilot Study. Frontiers in Public Health, 2019, 7, 418.	1.3	7
81	Reducing the cytotoxicity of inhalable engineered nanoparticles via in situ passivation with biocompatible materials. Journal of Hazardous Materials, 2015, 292, 118-125.	6.5	6
82	Collection of airborne ultrafine cellulose nanocrystals by impinger with an efficiency mimicking deposition in the human respiratory system. Journal of Occupational and Environmental Hygiene, 2019, 16, 141-150.	0.4	6
83	Methodology for Measuring PM2.5 Separator Characteristics Using an Aerosizer. Aerosol Science and Technology, 2001, 34, 398-406.	1.5	5
84	Simulation of Air Quality and Operating Cost to Ventilate Swine Farrowing Facilities in the Midwest U.S. During Winter. Transactions of the ASABE, 2017, 60, 465-477.	1.1	5
85	Generation of Nanoparticles with a Nebulizer-Cyclone System. Aerosol Science and Technology, 2009, 43, 1091-1098.	1.5	4
86	Sampling Strategies for Accurate Hazard Mapping of Noise and Other Hazards Using Short-Duration Measurements. Annals of Work Exposures and Health, 2017, 61, 183-194.	0.6	4
87	Development of a Portable Aerosol Collector and Spectrometer (PACS). Aerosol Science and Technology, 2018, 52, 1351-1369.	1.5	4
88	Evaluation of a Portable Aerosol Collector and Spectrometer to measure particle concentration by composition and size. Aerosol Science and Technology, 2019, 53, 675-687.	1.5	4
89	Comparing respirator laboratory protection factors measured with novel personal instruments to those from the PortaCount. Journal of Occupational and Environmental Hygiene, 2021, 18, 65-71.	0.4	4
90	Assessment of occupational personal sound exposures for music instructors. Journal of Occupational and Environmental Hygiene, 2021, 18, 139-148.	0.4	4

#	Article	IF	CITATIONS
91	High-Output Generation of Aerosols with Narrow Size Distributions. Inhalation Toxicology, 1996, 8, 709-722.	0.8	3
92	Influence of upstream flow characteristics on filter efficiency. Filtration and Separation, 2001, 38, 40-47.	0.2	3
93	Impactor designed to increase mass output rate of nanoparticles from a pneumatic nebulizer. Journal of Aerosol Science, 2010, 41, 170-179.	1.8	3
94	Evaluation of a Diffusion Charger for Measuring Aerosols in a Workplace. Annals of Occupational Hygiene, 2014, 58, 424-36.	1.9	3
95	Rapid analysis of the size distribution of metal-containing aerosol. Aerosol Science and Technology, 2017, 51, 108-115.	1.5	3
96	Assessment of university classroom ventilation during the COVID-19 pandemic. Journal of Occupational and Environmental Hygiene, 2022, 19, 295-301.	0.4	3
97	Design and evaluation of an inlet conditioner to dry particles for real-time particle sizers. Journal of Environmental Monitoring, 2008, 10, 541.	2.1	2
98	Combining physics-based and Kriging models to improve the estimation of noise exposure. Journal of Occupational and Environmental Hygiene, 2022, 19, 343-352.	0.4	2
99	Nonwoven textile for use in a nanoparticle respiratory deposition sampler. Journal of Occupational and Environmental Hygiene, 2017, 14, 368-376.	0.4	1
100	Design and evaluation of a high-flowrate nanoparticle respiratory deposition (NRD) sampler. Journal of Aerosol Science, 2019, 134, 72-79.	1.8	1
101	Sensitivity Analysis of the USEPA WINS PM2.5 Separator. Aerosol Science and Technology, 2001, 34, 465-476.	1.5	1
102	OUP accepted manuscript. Annals of Work Exposures and Health, 2021, , .	0.6	1
103	Evaluation of the Loading Characteristics of the EPA WINS PM2.5 Separator. Aerosol Science and Technology, 2001, 34, 444-456.	1.5	0