Surya Prakash Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/320883/publications.pdf

Version: 2024-02-01

130 papers 3,587 citations

147801 31 h-index 52 g-index

131 all docs

131 docs citations

131 times ranked

5369 citing authors

#	Article	IF	CITATIONS
1	Evolution of BODIPY Dyes as Potential Sensitizers for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2014, 2014, 4689-4707.	2.4	189
2	Conductive silver inks and their applications in printed and flexible electronics. RSC Advances, 2015, 5, 77760-77790.	3.6	162
3	Copper conductive inks: synthesis and utilization in flexible electronics. RSC Advances, 2015, 5, 63985-64030.	3.6	148
4	Carbon Dots: The Newest Member of the Carbon Nanomaterials Family. Chemical Record, 2015, 15, 595-615.	5.8	108
5	Donor-π–Acceptor Based Stable Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Effect of π-Conjugated Spacers. Journal of Physical Chemistry C, 2017, 121, 6464-6477.	3.1	101
6	Impact of end groups on the performance of non-fullerene acceptors for organic solar cell applications. Journal of Materials Chemistry A, 2019, 7, 22701-22729.	10.3	98
7	Synthesis of Carbon Dots from Kitchen Waste: Conversion of Waste to Value Added Product. Journal of Fluorescence, 2014, 24, 1767-1773.	2.5	94
8	Perovskite solar cells based on small molecule hole transporting materials. Journal of Materials Chemistry A, 2015, 3, 18329-18344.	10.3	88
9	Enhanced Lightâ€Harvesting Capability of a Panchromatic Ru(II) Sensitizer Based on Ï€â€Extended Terpyridine with a 4â€Methylstylryl Group for Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2013, 23, 1817-1823.	14.9	82
10	Recent advances in flexible perovskite solar cells. Chemical Communications, 2015, 51, 14696-14707.	4.1	78
11	Photophysical, electrochemical and photovoltaic properties of dye sensitized solar cells using a series of pyridyl functionalized porphyrin dyes. RSC Advances, 2012, 2, 12899.	3.6	76
12	Recent Advances in Halide-Based Perovskite Crystals and Their Optoelectronic Applications. Crystal Growth and Design, 2018, 18, 2645-2664.	3.0	75
13	Organometal halide perovskites as useful materials in sensitized solar cells. Dalton Transactions, 2014, 43, 5247.	3.3	65
14	A novel metal-free panchromatic TiO2 sensitizer based on a phenylenevinylene-conjugated unit and an indoline derivative for highly efficient dye-sensitized solar cells. Chemical Communications, 2011, 47, 12400.	4.1	64
15	Cosensitization of dye sensitized solar cells with a thiocyanate free Ru dye and a metal free dye containing thienylfluorene conjugation. RSC Advances, 2013, 3, 6036.	3.6	63
16	Efficient organic–inorganic hybrid perovskite solar cells processed in air. Physical Chemistry Chemical Physics, 2014, 16, 24691-24696.	2.8	61
17	An Organic Dyad Composed of Diathiafulvaleneâ€Functionalized Diketopyrrolopyrrole–Fullerene for Singleâ€Component Highâ€Efficiency Organic Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 12334-12337.	13.8	56
18	CH3NH3Pbl3 Perovskite Sensitized Solar Cells Using a D-A Copolymer as Hole Transport Material. Electrochimica Acta, 2015, 151, 21-26.	5.2	53

#	Article	IF	CITATIONS
19	Molecular Engineering of Highly Efficient Small Molecule Nonfullerene Acceptor for Organic Solar Cells. Advanced Functional Materials, 2017, 27, 1603820.	14.9	53
20	Dithienogermole-based solution-processed molecular solar cells with efficiency over 9%. Chemical Communications, 2016, 52, 8596-8599.	4.1	49
21	Low Temperature Mn Doped ZnO Nanorod Array: Synthesis and Its Photoluminescence Behavior. Industrial & Doped Engineering Chemistry Research, 2014, 53, 9383-9390.	3.7	48
22	Highly Directional 1D Supramolecular Assembly of New Diketopyrrolopyrrole-Based Gel for Organic Solar Cell Applications. Langmuir, 2016, 32, 4346-4351.	3.5	48
23	Co-sensitization of amphiphilic ruthenium (II) sensitizer with a metal free organic dye: Improved photovoltaic performance of dye sensitized solar cells. Organic Electronics, 2013, 14, 1237-1241.	2.6	43
24	Near-infrared squaraine co-sensitizer for high-efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 14279-14285.	2.8	41
25	Energy Transfer Dynamics of Highly Stable Fe ³⁺ Doped CsPbCl ₃ Perovskite Nanocrystals with Dual-Color Emission. Journal of Physical Chemistry C, 2019, 123, 17026-17034.	3.1	41
26	Synthesis of a Modified PC ₇₀ BM and Its Application as an Electron Acceptor with Poly(3â€hexylthiophene) as an Electron Donor for Efficient Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2012, 22, 4087-4095.	14.9	39
27	NIR absorbing D–π–A–π–D structured diketopyrrolopyrrole–dithiafulvalene based small molecule for solution processed organic solar cells. Chemical Communications, 2016, 52, 210-213.	4.1	38
28	Highly conjugated electron rich thiophene antennas on phenothiazine and phenoxazine-based sensitizers for dye sensitized solar cells. Synthetic Metals, 2014, 195, 208-216.	3.9	36
29	Phenothiazine-Based Hole Transport Materials for Perovskite Solar Cells. ACS Omega, 2020, 5, 5608-5619.	3.5	36
30	A simple fluorene core-based non-fullerene acceptor for high performance organic solar cells. Chemical Communications, 2017, 53, 12790-12793.	4.1	33
31	Achieving the highest efficiency using a BODIPY core decorated with dithiafulvalene wings for small molecule based solution-processed organic solar cells. Chemical Communications, 2017, 53, 6953-6956.	4.1	33
32	Shape tunable synthesis of Eu- and Sm-doped ZnO microstructures: a morphological evaluation. Bulletin of Materials Science, 2015, 38, 1519-1525.	1.7	32
33	Effectiveness of Solvent Vapor Annealing over Thermal Annealing on the Photovoltaic Performance of Non-Fullerene Acceptor Based BHJ Solar Cells. Scientific Reports, 2019, 9, 8529.	3.3	31
34	Simple Metal-Free Dyes Derived from Triphenylamine for DSSC: A Comparative Study of Two Different Anchoring Group. Electrochimica Acta, 2015, 169, 256-263.	5.2	30
35	Stable and charge recombination minimized π-extended thioalkyl substituted tetrathiafulvalene dye-sensitized solar cells. Materials Chemistry Frontiers, 2017, 1, 460-467.	5.9	30
36	Advances in BODIPY photocleavable protecting groups. Coordination Chemistry Reviews, 2021, 449, 214193.	18.8	30

#	Article	IF	CITATIONS
37	Highly efficient nanoporous graphitic carbon with tunable textural properties for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 20866.	6.7	29
38	Efficient near IR porphyrins containing a triphenylamine-substituted anthryl donating group for dye sensitized solar cells. Journal of Materials Chemistry C, 2019, 7, 13594-13605.	5.5	29
39	Efficient thiocyanate-free sensitizer: a viable alternative to N719 dye for dye-sensitized solar cells. Dalton Transactions, 2012, 41, 7604.	3.3	27
40	Improvement in the power conversion efficiency of thiocyanate-free Ru(ii) based dye sensitized solar cells by cosensitization with a metal-free dye. Journal of Materials Chemistry, 2012, 22, 18788.	6.7	27
41	The Cobalt-Catalyzed Cross-Coupling Reaction of Alkyl Halides with Alkyl Grignard Reagents: A New Route to Constructing Quaternary Carbon CentersÂ. Synthesis, 2014, 46, 1583-1592.	2.3	27
42	meso-Substituted BODIPY fluorescent probes for cellular bio-imaging and anticancer activity. RSC Advances, 2014, 4, 47409-47413.	3.6	27
43	First Study on Phosphonite-Coordinated Ruthenium Sensitizers for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19635-19642.	8.0	27
44	Ni-Doped CsPbBr ₃ Perovskite: Synthesis of Highly Stable Nanocubes. Langmuir, 2019, 35, 17150-17155.	3.5	27
45	Benzimidazole-functionalized ancillary ligands for heteroleptic Ru(<scp>ii</scp>) complexes: synthesis, characterization and dye-sensitized solar cell applications. Dalton Transactions, 2015, 44, 14697-14706.	3.3	26
46	Bulky Nature Phenanthroimidazole-Based Porphyrin Sensitizers for Dye-Sensitized Solar Cell Applications. Journal of Physical Chemistry C, 2017, 121, 25691-25704.	3.1	26
47	A fluorene-core-based electron acceptor for fullerene-free BHJ organic solar cells—towards power conversion efficiencies over 10%. Chemical Communications, 2018, 54, 4001-4004.	4.1	26
48	New indolo carbazole-based non-fullerene n-type semiconductors for organic solar cell applications. Journal of Materials Chemistry C, 2019, 7, 543-552.	5.5	26
49	Nearâ€Infrared (>1000â€nm) Lightâ€Harvesters: Design, Synthesis and Applications. Chemistry - A European Journal, 2020, 26, 16582-16593.	3.3	25
50	Indole and triisopropyl phenyl as capping units for a diketopyrrolopyrrole (DPP) acceptor central unit: an efficient D–A–D type small molecule for organic solar cells. RSC Advances, 2014, 4, 732-742.	3.6	23
51	New dithienosilole- and dithienogermole-based BODIPY for solar cell applications. New Journal of Chemistry, 2019, 43, 8735-8740.	2.8	23
52	Dithiafulvalene functionalized diketopyrrolopyrrole based sensitizers for efficient hydrogen production. Physical Chemistry Chemical Physics, 2015, 17, 13710-13718.	2.8	22
53	Study on Liposomal Encapsulation of New Bodipy Sensitizers for Photodynamic Therapy. ACS Medicinal Chemistry Letters, 2018, 9, 323-327.	2.8	22
54	High Affinity Neutral Bodipy Fluorophores for Mitochondrial Tracking. ACS Medicinal Chemistry Letters, 2018, 9, 618-622.	2.8	22

#	Article	IF	CITATIONS
55	Butterfly architecture of NIR Aza-BODIPY small molecules decorated with phenothiazine or phenoxazine. Chemical Communications, 2019, 55, 12535-12538.	4.1	22
56	One bipyridine and triple advantages: tailoring ancillary ligands in ruthenium complexes for efficient sensitization in dye solar cells. Journal of Materials Chemistry, 2012, 22, 18757.	6.7	21
57	Effect of linker used in D–A–π–A metal free dyes with different π-spacers for dye sensitized solar cells. Organic Electronics, 2012, 13, 3108-3117.	2.6	21
58	2,6-Bis(1-methylbenzimidazol-2-yl)pyridine: A New Ancillary Ligand for Efficient Thiocyanate-Free Ruthenium Sensitizer in Dye-Sensitized Solar Cell Applications. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11623-11630.	8.0	21
59	High-Performance Non-Fullerene Acceptor Derived from Diathiafulvalene Wings for Solution-Processed Organic Photovoltaics. Journal of Physical Chemistry C, 2016, 120, 24615-24622.	3.1	21
60	Near Infrared Organic Semiconducting Materials for Bulk Heterojunction and Dyeâ€Sensitized Solar Cells. Chemical Record, 2014, 14, 419-481.	5.8	20
61	Effect of spacers and anchoring groups of extended π-conjugated tetrathiafulvalene based sensitizers on the performance of dye sensitized solar cells. Sustainable Energy and Fuels, 2017, 1, 345-353.	4.9	20
62	New Electron Acceptor Derived from Fluorene: Synthesis and Its Photovoltaic Properties. Journal of Physical Chemistry C, 2016, 120, 13390-13397.	3.1	19
63	Near-infrared unsymmetrical blue and green squaraine sensitizers. Photochemical and Photobiological Sciences, 2016, 15, 287-296.	2.9	19
64	Dâ^'π–Aâ^'π–D Structured Diketopyrrolopyrrole-Based Electron Donors for Solution-Processed Organic Solar Cells. ACS Omega, 2018, 3, 13365-13373.	3. 5	19
65	Photoinduced Borylation Reactions: An Overview. Asian Journal of Organic Chemistry, 2021, 10, 7-37.	2.7	19
66	Effects of methoxy group(s) on D-ï∈-A porphyrin based DSSCs: efficiency enhanced by co-sensitization. Materials Chemistry Frontiers, 2022, 6, 580-592.	5 . 9	19
67	Impact of rotamer diversity on the self-assembly of nearly isostructural molecular semiconductors. Journal of Materials Chemistry A, 2018, 6, 383-394.	10.3	18
68	Kinetics of dye regeneration in liquid electrolyte unveils efficiency of 10.5% in dye-sensitized solar cells. Journal of Materials Chemistry C, 2018, 6, 11444-11456.	5 . 5	18
69	Solventâ€Free Ruthenium(II)â€Catalyzed C–H Activation: Synthesis of Alkenylarylpyrazole Derivatives. European Journal of Organic Chemistry, 2015, 2015, 6025-6032.	2.4	17
70	A 9.16% Power Conversion Efficiency Organic Solar Cell with a Porphyrin Conjugated Polymer Using a Nonfullerene Acceptor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28078-28087.	8.0	17
71	Simple diphenylamine based D–π–A type sensitizers/co-sensitizers for DSSCs: a comprehensive study on the impact of anchoring groups. Physical Chemistry Chemical Physics, 2019, 21, 10603-10613.	2.8	17
72	Synthesis of Multichromophoric Asymmetrical Squaraine Sensitizer via $C\hat{a}\in H$ Arylation for See-through Photovoltaic. ACS Applied Energy Materials, 2018, 1, 4786-4793.	5.1	16

#	Article	IF	Citations
73	Unraveling the unusual effect of fluorination on crystal packing in an organic semiconductor. Physical Chemistry Chemical Physics, 2020, 22, 1665-1673.	2.8	16
74	Efficient dye-sensitized solar cells based on cosensitized metal free organic dyes with complementary absorption spectra. Journal of Renewable and Sustainable Energy, 2013, 5, .	2.0	15
75	Osmium Polypyridyl Complexes and Their Applications to Dye-Sensitized Solar Cells. Chemical Record, 2015, 15, 457-474.	5.8	15
76	High performance dye-sensitized solar cell from a cocktail solution of a ruthenium dye and metal free organic dye. RSC Advances, 2016, 6, 41151-41155.	3.6	15
77	An all-small-molecule organic solar cell derived from naphthalimide for solution-processed high-efficiency nonfullerene acceptors. Journal of Materials Chemistry C, 2019, 7, 709-717.	5. 5	15
78	Pyridyl-functionalized spiro[fluoreneâ€"xanthene] as a dopant-free hole-transport material for stable perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 7276-7285.	5.9	15
79	Tuning of spectral response by co-sensitization in black-dye based dye-sensitized solar cell. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 651-656.	1.8	14
80	Prospects of Graphene as a Potential Carrier-Transport Material in Third-Generation Solar Cells. Chemical Record, 2016, 16, 614-632.	5.8	14
81	Synthesis and Spectroscopic Investigation of Diketopyrrolopyrrole - Spiropyran Dyad for Fluorescent Switch Application. Journal of Fluorescence, 2016, 26, 1939-1949.	2.5	13
82	MA ₂ CoBr ₄ : lead-free cobalt-based perovskite for electrochemical conversion of water to oxygen. Chemical Communications, 2019, 55, 6779-6782.	4.1	13
83	Heteroleptic Ru(<scp>ii</scp>) cyclometalated complexes derived from benzimidazole-phenyl carbene ligands for dye-sensitized solar cells: an experimental and theoretical approach. Materials Chemistry Frontiers, 2017, 1, 947-957.	5.9	12
84	Design and synthesis of ruthenium bipyridine catalyst: An approach towards low-cost hydroxylation of arenes and heteroarenes. Tetrahedron Letters, 2017, 58, 3743-3746.	1.4	12
85	Leadâ€Free, Waterâ€Stable A ₃ Bi ₂ I ₉ Perovskites: Crystal Growth and Blueâ€Emitting Quantum Dots [A=CH ₃ NH ₃ ⁺ , Cs ⁺ , and (Rb _{0.05} Cs _{2.95}) ⁺]. Chemistry - A European Journal, 2020, 26, 10519-10527.	3.3	12
86	One-Step Synthesis of New Electron Acceptor for High Efficiency Solution Processable Organic Solar Cells. Journal of Physical Chemistry C, 2017, 121, 26615-26621.	3.1	11
87	Impact of A–D–Aâ€Structured Dithienosilole―and Phenoxazineâ€Based Small Molecular Material for Bulk Heterojunction and Dopantâ€Free Perovskite Solar Cells. Chemistry - A European Journal, 2019, 25, 16320-16327.	3.3	11
88	Calibration independent estimation of optical constants using terahertz timeâ€domain spectroscopy. Microwave and Optical Technology Letters, 2015, 57, 1861-1864.	1.4	10
89	Functional π-conjugated tetrathiafulvalene decorated with benzothiadiazole organic sensitizers for dye sensitized solar cells. New Journal of Chemistry, 2019, 43, 8919-8929.	2.8	10
90	Leadâ€halides Perovskite Visible Light Photoredox Catalysts for Organic Synthesis. Chemical Record, 2020, 20, 1181-1197.	5.8	10

#	Article	IF	CITATIONS
91	An indacenodithiophene core moiety for organic solar cells. Materials Chemistry Frontiers, 2021, 5, 7724-7736.	5.9	10
92	A phenothiazine-fused electroactive bilayer helicene: design, synthesis, ACQ-to-AIE transformation and photophysical properties. Journal of Materials Chemistry C, 2022, 10, 5173-5182.	5 . 5	10
93	$4,4\hat{a}\in^2$ -Unsymmetrically substituted- $2,2\hat{a}\in^2$ -bipyridines: novel bidentate ligands on ruthenium(ii) $[3+2+1]$ mixed ligand complexes for efficient sensitization of nanocrystalline TiO2 in dye solar cells. RSC Advances, 2013, 3, 26035.	3. 6	9
94	An Organic Dyad Composed of Diathiafulvaleneâ€Functionalized Diketopyrrolopyrrole–Fullerene for Singleâ€Component Highâ€Efficiency Organic Solar Cells. Angewandte Chemie, 2016, 128, 12522-12525.	2.0	9
95	Solvent-Assisted Tuning of the Size and Shape of CsPbBr3 Nanocrystals via Redispersion Process at Ambient Condition. Langmuir, 2018, 34, 15507-15516.	3.5	9
96	Access to small molecule semiconductors <i>via</i> Câ€"H activation for photovoltaic applications. Chemical Communications, 2018, 54, 7322-7325.	4.1	9
97	Benzodithiazoleâ€Based Holeâ€Transporting Material for Efficient Perovskite Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 2497-2503.	2.7	8
98	Peptide-based novel small molecules and polymers: unexplored optoelectronic materials. Journal of Materials Chemistry C, 2021, 9, 12462-12488.	5.5	8
99	Application of small molecules based on a dithienogermole core in bulk heterojunction organic solar cells and perovskite solar cells. Materials Chemistry Frontiers, 2020, 4, 2168-2175.	5.9	8
100	Highâ€efficiency polymer solar cells based on phenylenevinylene copolymer with BF ₂ â€azopyrrole complex and CNâ€PC ₇₀ BM with solvent additive. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1612-1618.	2.1	7
101	Multichromophore Donor Materials Derived from Diketopyrrolopyrrole and Phenoxazine: Design, Synthesis, and Photovoltaic Performance. European Journal of Organic Chemistry, 2017, 2017, 4896-4904.	2.4	7
102	Efficient Medium Bandgap Electron Acceptor Based on Diketopyrrolopyrrole and Furan for Efficient Ternary Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2022, , .	8.0	7
103	[1]Benzothieno[3,2- <i>b</i>][1]benzothiophene-based dyes: effect of the ancillary moiety on mechanochromism and aggregation-induced emission. Physical Chemistry Chemical Physics, 2022, 24, 15110-15120.	2.8	7
104	Cowrie-shell architectures: Low temperature growth of Ni doped CdS film. Journal of Alloys and Compounds, 2015, 649, 553-558.	5.5	6
105	Cu-implanted ZnO nanorods array film: An aqueous synthetic approach. Journal of Alloys and Compounds, 2015, 618, 421-427.	5. 5	6
106	Spin–orbit coupling and Lorentz force enhanced efficiency of TiO ₂ â€based dye sensitized solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600691.	1.8	6
107	Ultrafast Fluorescence Photoswitch Incorporating Diketopyrrolopyrrole and Benzo[1,3]oxazine. Journal of Physical Chemistry C, 2017, 121, 27313-27326.	3.1	6
108	High performance dye anchored counter electrodes with a SPSQ2 sensitizer for dye sensitized solar cell applications. Materials Chemistry Frontiers, 2017, 1, 735-740.	5.9	6

#	Article	IF	CITATIONS
109	The effect of alkylamines on the morphology and optical properties of organic perovskites. Solar Energy, 2021, 226, 483-488.	6.1	6
110	Synthesis and Optoelectrical Characterization of Novel Squaraine Dyes Derived from Benzothiophene and Benzofuran. ACS Omega, 2018, 3, 13919-13927.	3.5	5
111	Panchromatic aza-Bodipy based π-conjugates. New Journal of Chemistry, 2021, 45, 7792-7798.	2.8	5
112	Highly Efficient Sulfimidation of 1,3â€Dithianes by Cu(I) Complexes. Synthetic Communications, 2008, 38, 619-625.	2.1	4
113	Solutionâ€Processed Organic Solar Cells Using New Electron Acceptor Derived from Naphthalene and Fluorene Unit. ChemistrySelect, 2017, 2, 7913-7917.	1.5	4
114	Enhanced Photovoltaic Performance via Co-sensitization of Ruthenium (II)-Based Complex Sensitizers with Metal-Free Indoline Dye in Dye-Sensitized Solar Cells. Organic Photonics and Photovoltaics, 2017, 5, .	1.3	4
115	Reactions in Water – A Greener Approach Using Ruthenium Catalysts. Chemical Record, 2019, 19, 1935-1951.	5. 8	4
116	Distyryl 1,2-Bis(2-pyridylmethoxy) benzene substituted near-infrared BODIPY photosensitizers: synthesis and spectroscopic studies. Journal of Chemical Sciences, 2021, 133, 1.	1.5	4
117	A novel perylenediimide molecule: Synthesis, structural property relationship and nanoarchitectonics. Journal of Solid State Chemistry, 2022, 306, 122687.	2.9	4
118	Reversible Fluorescence Modulation in a Dyad Comprising Phenothiazine Derivative and Spiropyran. Asian Journal of Organic Chemistry, 2018, 7, 2254-2262.	2.7	3
119	Highly Efficient Benzo-Furan-Based Electron Acceptor Derived from One-Pot Synthesis for High-Performance Bulk Heterojunction Solar Cells. ACS Applied Energy Materials, 2019, 2, 1019-1025.	5.1	3
120	Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres. Advances in OptoElectronics, 2011, 2011, 1-5.	0.6	2
121	Panchromatic sensitization of new terpyridine ligated thiocyanate-free Ru-complex. Solar Energy, 2019, 188, 305-311.	6.1	2
122	Trifluoromethylâ€Directed Supramolecular Selfâ€Assembly of Fullerenes: Synthesis, Characterization and Photovoltaic Applications. ChemistrySelect, 2020, 5, 1115-1121.	1.5	2
123	Aza-dipyrrinato ruthenium sensitizers for enhancement of Light-Harvesting ability of Dye-Sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 275, 121131.	3.9	2
124	Molecular Engineering and Structure-Related Properties of Squaraine Dyes Based on the Core and Wings Concept. ACS Omega, 2018, 3, 15416-15425.	3 . 5	1
125	Ruthenium-bipyridine complex catalyzed Câ \in "H alkenylation of arylpyrazole derivatives. Journal of Chemical Sciences, 2018, 130, 1.	1.5	1
126	Structural and optical properties of ionic liquid-based hybrid perovskitoid: A combined experimental and theoretical investigation. Functional Materials Letters, 2021, 14, 2150008.	1.2	1

#	Article	IF	CITATIONS
127	Blue-red emitting 2,12-disubstituted [5]helicenes for high fluorescence efficiency and sensing application. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 411, 113203.	3.9	1
128	Carbazole core derived dyes: New non-fullerene acceptor for all small-molecule organic solar cells with very high open-circuit voltage of 1.12ÂV. Dyes and Pigments, 2021, 194, 109606.	3.7	1
129	Self-assembled C60 Fullerene Cylindrical nanotubes by LLIP method. , 2016, , .		0
130	Frontispiece: Nearâ€Infrared (>1000â€nm) Lightâ€Harvesters: Design, Synthesis and Applications. Chemistr - A European Journal, 2020, 26, .	y _{3.3}	0