
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3208724/publications.pdf Version: 2024-02-01

MIESA AND BARK

#	Article	IF	CITATIONS
1	Does reduced MHC diversity decrease viability of vertebrate populations?. Biological Conservation, 2010, 143, 537-544.	4.1	201
2	Detecting balancing selection in genomes: limits and prospects. Molecular Ecology, 2015, 24, 3529-3545.	3.9	195
3	Advances in the Evolutionary Understanding of MHC Polymorphism. Trends in Genetics, 2020, 36, 298-311.	6.7	188
4	Phylogeography of two European newt species - discordance between mtDNA and morphology. Molecular Ecology, 2005, 14, 2475-2491.	3.9	173
5	Effects of an MHCâ€DRB genotype and allele number on the load of gut parasites in the bank vole <i>Myodes glareolus</i> . Molecular Ecology, 2010, 19, 255-265.	3.9	134
6	New generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system. Molecular Ecology Resources, 2009, 9, 713-719.	4.8	133
7	Methods for MHC genotyping in nonâ€model vertebrates. Molecular Ecology Resources, 2010, 10, 237-251.	4.8	125
8	Mitochondrial phylogeography of the moor frog, Rana arvalis. Molecular Ecology, 2004, 13, 1469-1480.	3.9	108
9	454 sequencing reveals extreme complexity of the class II Major Histocompatibility Complex in the collared flycatcher. BMC Evolutionary Biology, 2010, 10, 395.	3.2	106
10	No evidence for nuclear introgression despite complete mt <scp>DNA</scp> replacement in the <scp>C</scp> arpathian newt (<i><scp>L</scp>issotriton montandoni</i>). Molecular Ecology, 2013, 22, 1884-1903.	3.9	96
11	Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycological Research, 2009, 113, 952-959.	2.5	87
12	jMHC: software assistant for multilocus genotyping of gene families using nextâ€generation amplicon sequencing. Molecular Ecology Resources, 2011, 11, 739-742.	4.8	86
13	MHC diversity, malaria and lifetime reproductive success in collared flycatchers. Molecular Ecology, 2012, 21, 2469-2479.	3.9	82
14	Sequence diversity of the MHC DRB gene in the Eurasian beaver (<i>Castor fiber</i>). Molecular Ecology, 2005, 14, 4249-4257.	3.9	80
15	Divergence in the Face of Gene Flow: The Case of Two Newts (Amphibia: Salamandridae). Molecular Biology and Evolution, 2009, 26, 829-841.	8.9	78
16	Phylogeography of the fire-bellied toads Bombina: independent Pleistocene histories inferred from mitochondrial genomes. Molecular Ecology, 2007, 16, 2301-2316.	3.9	77
17	Interspecific hybridization increases MHC class II diversity in two sister species of newts. Molecular Ecology, 2012, 21, 887-906.	3.9	69
18	Nuclear and mitochondrial phylogeography of the European fireâ€bellied toads <i>Bombina bombina</i> and <i>Bombina variegata</i> supports their independent histories. Molecular Ecology, 2011, 20, 3381-3398.	3.9	68

#	Article	IF	CITATIONS
19	Nuclear markers, mitochondrial DNA and male secondary sexual traits variation in a newt hybrid zone (Triturus vulgaris Â× T. montandoni). Molecular Ecology, 2003, 12, 1913-1930.	3.9	67
20	Evolution of major histocompatibility complex class I and class II genes in the brown bear. BMC Evolutionary Biology, 2012, 12, 197.	3.2	63
21	MHC-DRB3 variation in a free-living population of the European bison, Bison bonasus. Molecular Ecology, 2006, 16, 531-540.	3.9	61
22	Contrasting patterns of variation in MHC loci in the Alpine newt. Molecular Ecology, 2008, 17, 2339-2355.	3.9	59
23	Longâ€ŧerm survival of a urodele amphibian despite depleted major histocompatibility complex variation. Molecular Ecology, 2009, 18, 769-781.	3.9	58
24	Selective pressures on <scp>MHC</scp> class <scp>II</scp> genes in the guppy (<i><scp>P</scp>oecilia) Tj ETQ Biology, 2014, 27, 2347-2359.</i>	q0 0 0 rgl 1.7	3T /Overlock 55
25	Accuracy of allele frequency estimation using pooled <scp>RNA</scp> â€6eq. Molecular Ecology Resources, 2014, 14, 381-392.	4.8	54
26	Mitochondrial phylogeography of the Eurasian beaver Castor fiber L Molecular Ecology, 2005, 14, 3843-3856.	3.9	51
27	Alternative reproductive tactics and sexâ€biased gene expression: the study of the bulb mite transcriptome. Ecology and Evolution, 2014, 4, 623-632.	1.9	50
28	Deeply divergent sympatric mitochondrial lineages of the earthworm Lumbricus rubellus are not reproductively isolated. BMC Evolutionary Biology, 2015, 15, 217.	3.2	50
29	The dissection of a Pleistocene refugium: phylogeography of the smooth newt, <i>Lissotriton vulgaris</i> , in the Balkans. Journal of Biogeography, 2015, 42, 671-683.	3.0	47
30	The genomics of adaptation. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 5024-5028.	2.6	45
31	Isolation and gene flow in a speciation continuum in newts. Molecular Phylogenetics and Evolution, 2017, 116, 1-12.	2.7	45
32	An evaluation of two potential risk factors, MHC diversity and host density, for infection by an invasive nematode Ashworthius sidemi in endangered European bison (Bison bonasus). Biological Conservation, 2010, 143, 2049-2053.	4.1	44
33	Evaluation of two approaches to genotyping major histocompatibility complex class I in a passerine—CEâ€6SCP and 454 pyrosequencing. Molecular Ecology Resources, 2012, 12, 285-292.	4.8	42
34	The crested newt <i>Triturus cristatus</i> recolonized temperate Eurasia from an extra-Mediterranean glacial refugium. Biological Journal of the Linnean Society, 2015, 114, 574-587.	1.6	36
35	Constraint and Adaptation in newt Toll-Like Receptor Genes. Genome Biology and Evolution, 2015, 7, 81-95.	2.5	34
36	Massive introgression of major histocompatibility complex (MHC) genes in newt hybrid zones. Molecular Ecology, 2019, 28, 4798-4810.	3.9	34

#	Article	IF	CITATIONS
37	Navigating the temporal continuum of effective population size. Methods in Ecology and Evolution, 2022, 13, 22-41.	5.2	34
38	How sympatric is speciation in the <i>Howea</i> palms of Lord Howe Island?. Molecular Ecology, 2009, 18, 3629-3638.	3.9	33
39	Parasite load and <scp>MHC</scp> diversity in undisturbed and agriculturally modified habitats of the ornate dragon lizard. Molecular Ecology, 2014, 23, 5966-5978.	3.9	32
40	MHC allele frequency distributions under parasite-driven selection: A simulation model. BMC Evolutionary Biology, 2010, 10, 332.	3.2	31
41	Genetic structure in northeastern populations of the Alpine newt (Triturus alpestris): evidence for post-Pleistocene differentiation. Molecular Ecology, 2006, 15, 2397-2407.	3.9	28
42	Differential introgression across newt hybrid zones: Evidence from replicated transects. Molecular Ecology, 2019, 28, 4811-4824.	3.9	28
43	Development, validation and highâ€ŧhroughput analysis of sequence markers in nonmodel species. Molecular Ecology Resources, 2014, 14, 352-360.	4.8	27
44	Evolutionary principles guiding amphibian conservation. Evolutionary Applications, 2020, 13, 857-878.	3.1	27
45	Initial Molecular-Level Response to Artificial Selection for Increased Aerobic Metabolism Occurs Primarily through Changes in Gene Expression. Molecular Biology and Evolution, 2015, 32, 1461-1473.	8.9	26
46	Genomics of end-Pleistocene population replacement in a small mammal. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172624.	2.6	26
47	Genetic differentiation among northern and southern populations of the moor frog Rana arvalis Nilsson in central Europe. Heredity, 2000, 84, 610-618.	2.6	25
48	Strong genetic differentiation between Gymnadenia conopsea and G. densiflora despite morphological similarity. Plant Systematics and Evolution, 2011, 293, 213-226.	0.9	25
49	Genomic Response to Selection for Predatory Behavior in a Mammalian Model of Adaptive Radiation. Molecular Biology and Evolution, 2016, 33, 2429-2440.	8.9	25
50	Single Nucleotide Polymorphisms Reveal Genetic Structuring of the Carpathian Newt and Provide Evidence of Interspecific Gene Flow in the Nuclear Genome. PLoS ONE, 2014, 9, e97431.	2.5	23
51	Biofilm feeding: Microbial colonization of food promotes the growth of a detritivorous arthropod. ZooKeys, 2016, 577, 25-41.	1.1	23
52	Heart transcriptome of the bank vole (Myodes glareolus): towards understanding the evolutionary variation in metabolic rate. BMC Genomics, 2010, 11, 390.	2.8	22
53	Divergence history of the Carpathian and smooth newts modelled in space and time. Molecular Ecology, 2016, 25, 3912-3928.	3.9	22
54	Phylotranscriptomic evidence for pervasive ancient hybridization among Old World salamanders. Molecular Phylogenetics and Evolution, 2021, 155, 106967.	2.7	22

#	Article	IF	CITATIONS
55	Genomic heterogeneity of historical gene flow between two species of newts inferred from transcriptome data. Ecology and Evolution, 2016, 6, 4513-4525.	1.9	21
56	Balancing selection and introgression of newt immune-response genes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180819.	2.6	21
57	Transcriptomics of Intralocus Sexual Conflict: Gene Expression Patterns in Females Change in Response to Selection on a Male Secondary Sexual Trait in the Bulb Mite. Genome Biology and Evolution, 2016, 8, 2351-2357.	2.5	20
58	Genome-wide genetic diversity of rove beetle populations along a metal pollution gradient. Ecotoxicology and Environmental Safety, 2015, 119, 98-105.	6.0	19
59	Low Major Histocompatibility Complex Class I (MHC I) Variation in the European Bison (Bison bonasus). Journal of Heredity, 2012, 103, 349-359.	2.4	18
60	Data Concatenation, Bayesian Concordance and Coalescent-Based Analyses of the Species Tree for the Rapid Radiation of Triturus Newts. PLoS ONE, 2014, 9, e111011.	2.5	18
61	Effects of heterozygosity and MHC diversity on patterns of extra-pair paternity in the socially monogamous scarlet rosefinch. Behavioral Ecology and Sociobiology, 2015, 69, 459-469.	1.4	17
62	Morphometric differentiation of the moor frog (Rana arvalis Nilss.) in Central Europe. Journal of Zoological Systematics and Evolutionary Research, 2000, 38, 239-247.	1.4	16
63	Vanishing benefits - The loss of actinobacterial symbionts at elevated temperatures. Journal of Thermal Biology, 2019, 82, 222-228.	2.5	16
64	Relationship between morphometric and genetic variation in pure and hybrid populations of the smooth and Montandons newt (Triturus vulgaris and T. montandoni). Journal of Zoology, 2004, 262, 135-143.	1.7	15
65	Plant–herbivorous beetle networks: molecular characterization of trophic ecology within a threatened steppic environment. Molecular Ecology, 2015, 24, 4023-4038.	3.9	15
66	Conservation units in north-eastern populations of the Alpine newt (Triturus alpestris). Conservation Genetics, 2005, 6, 307-312.	1.5	13
67	Evolutionary units of <i>Coraebus elatus</i> (Coleoptera: Buprestidae) in central and eastern Europe – implications for origin and conservation. Insect Conservation and Diversity, 2014, 7, 41-54.	3.0	13
68	Selective Landscapes in newt Immune Genes Inferred from Patterns of Nucleotide Variation. Genome Biology and Evolution, 2016, 8, 3417-3432.	2.5	13
69	The role of MHC supertypes in promoting trans-species polymorphism remains an open question. Nature Communications, 2018, 9, 4362.	12.8	13
70	A three-marker DNA barcoding approach for ecological studies of xerothermic plants and herbivorous insects from central Europe. Botanical Journal of the Linnean Society, 2015, 177, 576-592.	1.6	12
71	The Carpathians hosted extra-Mediterranean refugia-within-refugia during the Pleistocene Ice Age: genomic evidence from two newt genera. Biological Journal of the Linnean Society, 2017, 122, 605-613.	1.6	12
72	Genetic drift shaped MHC IIB diversity of an endangered anuran species within the Italian glacial refugium. Journal of Zoology, 2019, 307, 61-70.	1.7	12

#	Article	IF	CITATIONS
73	in the Abdominal Glands of the Smooth Newt (Lissotriton vulgaris) and Montandon's Newt (L.) Tj ETQq1 1 0.7	784314 rg 0.7	BT1Overloc
74	Sequence diversity of MHC class II DRB genes in the bank voleMyodes glareolus. Acta Theriologica, 2007, 52, 227-235.	1.1	10
75	Linkage Map of <i>Lissotriton</i> Newts Provides Insight into the Genetic Basis of Reproductive Isolation. G3: Genes, Genomes, Genetics, 2017, 7, 2115-2124.	1.8	10
76	Balancing selection versus allele and supertype turnover in MHC class II genes in guppies. Heredity, 2021, 126, 548-560.	2.6	9
77	No Evidence for the Effect of MHC on Male Mating Success in the Brown Bear. PLoS ONE, 2014, 9, e113414.	2.5	8
78	Admixture of two phylogeographic lineages of the Eurasian beaver in Poland. Mammalian Biology, 2014, 79, 287-296.	1.5	8
79	Genomic evidence that a sexually selected trait captures genome-wide variation and facilitates the purging of genetic load. Nature Ecology and Evolution, 2022, 6, 1330-1342.	7.8	8
80	Low effective population sizes and limited connectivity in xerothermic beetles: implications for the conservation of an endangered habitat. Animal Conservation, 2014, 17, 454-466.	2.9	7
81	Population structure of guppies in north-eastern Venezuela, the area of putative incipient speciation. BMC Evolutionary Biology, 2014, 14, 28.	3.2	7
82	Genetic structure and differentiation of the fire salamander Salamandra salamandra at the northern margin of its range in the Carpathians. Amphibia - Reptilia, 2015, 36, 301-311.	0.5	7
83	MHC structuring and divergent allele advantage in a urodele amphibian: a hierarchical multi-scale approach. Heredity, 2019, 123, 593-607.	2.6	7
84	Next-generation phylogeography of the banded newts (Ommatotriton): A phylogenetic hypothesis for three ancient species with geographically restricted interspecific gene flow and deep intraspecific genetic structure. Molecular Phylogenetics and Evolution, 2022, 167, 107361.	2.7	7
85	Genetic structure of the fire salamander Salamandra salamandra in the Polish Sudetes. Amphibia - Reptilia, 2016, 37, 405-415.	0.5	6
86	Intrageneric predation in larval newts (Triturus, Salamandridae, Urodela). Amphibia - Reptilia, 1998, 19, 446-451.	0.5	5
87	Coevolution between MHC Class I and Antigen-Processing Genes in Salamanders. Molecular Biology and Evolution, 2021, 38, 5092-5106.	8.9	5
88	A combination of techniques proves useful in the development of nuclear markers in the newt genus <i>Triturus</i> . Molecular Ecology Resources, 2009, 9, 1160-1162.	4.8	4
89	Development and characterization of microsatellite loci in the Centricnemus leucogrammus weevil. Molecular Biology Reports, 2012, 39, 11131-11136.	2.3	3
90	Morphology is a poor predictor of interspecific admixture– the case of two naturally hybridizing newts Lissotriton montandoni and Lissotriton vulgaris (Caudata: Salamandridae). Amphibia - Reptilia, 2020, 41, 489-500.	0.5	3

#	Article	IF	CITATIONS
91	Landscape genetics reveals contrasting patterns of connectivity in two newt species (<i>Lissotriton) Tj ETQq1 1</i>	0.784314	rggBT /Ove <mark>rlo</mark>
92	Molecular Evolution of Antigen-Processing Genes in Salamanders: Do They Coevolve with MHC Class I Genes?. Genome Biology and Evolution, 2021, 13, .	2.5	2
93	Knowledge Representation in Map Collections for Information Retrieval Systems. LIBER Quarterly, 1999, 9, 172-179.	0.7	1