Chen Jun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3208558/publications.pdf

Version: 2024-02-01

84	1,566	21 h-index	34
papers	citations		g-index
85	85	85	998
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. International Journal of Machine Tools and Manufacture, 2013, 73, 37-46.	13.4	106
2	A new shear and tension based ductile fracture criterion: Modeling and validation. European Journal of Mechanics, A/Solids, 2017, 66, 370-386.	3.7	78
3	A normalized stress invariant-based yield criterion: Modeling and validation. International Journal of Plasticity, 2017, 99, 248-273.	8.8	70
4	Analytical modeling and experimental validation of the forming force in several typical incremental sheet forming processes. International Journal of Machine Tools and Manufacture, 2019, 140, 62-76.	13.4	65
5	An efficient method for thickness prediction in multi-pass incremental sheet forming. International Journal of Advanced Manufacturing Technology, 2015, 77, 469-483.	3.0	50
6	Development of novel tools for electricity-assisted incremental sheet forming of titanium alloy. International Journal of Advanced Manufacturing Technology, 2016, 85, 1137-1144.	3.0	49
7	Topology optimization of die weight reduction for high-strength sheet metal stamping. International Journal of Mechanical Sciences, 2012, 59, 73-82.	6.7	43
8	Fuzzy similarity-based rough set method for case-based reasoning and its application in tool selection. International Journal of Machine Tools and Manufacture, 2006, 46, 107-113.	13.4	42
9	Constitutive modeling of hot deformation behavior of X20Cr13 martensitic stainless steel with strain effect. Transactions of Nonferrous Metals Society of China, 2014, 24, 1407-1413.	4.2	42
10	Investigation on a new hole-flanging approach by incremental sheet forming through a featured tool. International Journal of Machine Tools and Manufacture, 2016, 110, 1-17.	13.4	41
11	A Comparative Study on Process Potentials for Frictional Stir- and Electric Hot-assisted Incremental Sheet Forming. Procedia Engineering, 2014, 81, 2324-2329.	1.2	38
12	A generalized thermodynamic approach for modeling nonlinear hardening behaviors. International Journal of Plasticity, 2012, 38, 102-122.	8.8	34
13	Analytical model and experimental validation of surface roughness for incremental sheet metal forming parts. International Journal of Machine Tools and Manufacture, 2019, 146, 103453.	13.4	34
14	Effect of hydrogen on the microstructure and superplasticity of Ti-55 alloy. International Journal of Hydrogen Energy, 2017, 42, 6338-6349.	7.1	32
15	Fracture Morphologies of Advanced High Strength Steel During Deformation. Acta Metallurgica Sinica (English Letters), 2014, 27, 101-106.	2.9	31
16	Enhancement of adhesion strength by micro-rolling-based surface texturing. International Journal of Advanced Manufacturing Technology, 2015, 78, 1427-1435.	3.0	31
17	Effective forming strategy for double-sided incremental forming considering in-plane curvature and tool direction. CIRP Annals - Manufacturing Technology, 2016, 65, 265-268.	3. 6	30
18	Overview on the Prediction Models for Sheet Metal Forming Failure: Necking and Ductile Fracture. Acta Mechanica Solida Sinica, 2018, 31, 259-289.	1.9	27

#	Article	IF	CITATIONS
19	Robust design of sheet metal forming process based on adaptive importance sampling. Structural and Multidisciplinary Optimization, 2009, 39, 531-544.	3.5	25
20	Experimental investigations on friction stir assisted single point incremental forming of low-ductility aluminum alloy sheet for higher formability with reasonable surface quality. Journal of Materials Processing Technology, 2020, 277, 116488.	6.3	24
21	Strengthening of Aluminum Alloy 2219 by Thermo-mechanical Treatment. Journal of Materials Engineering and Performance, 2015, 24, 3905-3911.	2.5	23
22	Geological characteristics of strata in Chongqing, China, and mitigation of the environmental impacts of tunneling-induced geo-hazards. Environmental Earth Sciences, 2017, 76, 1.	2.7	23
23	Dissimilar diffusion bonding behavior of hydrogenated Ti2AlNb-based and Ti-6Al-4V alloys. Materials and Design, 2018, 159, 68-78.	7.0	23
24	Investigations on failure-to-fracture mechanism and prediction of forming limit for aluminum alloy incremental forming process. Journal of Materials Processing Technology, 2020, 282, 116687.	6.3	23
25	Double-sided friction stir spot welding of steel and aluminum alloy sheets. International Journal of Advanced Manufacturing Technology, 2018, 96, 2875-2884.	3.0	22
26	On the calculation of plastic strain by simple method under non-associated flow rule. European Journal of Mechanics, A/Solids, 2018, 67, 45-57.	3.7	21
27	Experiment and numerical simulation on delamination during the laminated steel sheet forming processes. International Journal of Advanced Manufacturing Technology, 2013, 68, 641-649.	3.0	20
28	Reduction of geometric deviation by multi-pass incremental forming combined with tool path compensation for non-axisymmetric aluminum alloy component with stepped feature. International Journal of Advanced Manufacturing Technology, 2019, 102, 809-817.	3.0	19
29	Influence of strain rate on tensile characteristics of SUS304 metastable austenitic stainless steel. Acta Metallurgica Sinica (English Letters), 2013, 26, 657-662.	2.9	18
30	Describing the non-saturating cyclic hardening behavior with a newly developed kinematic hardening model and its application in springback prediction of DP sheet metals. Journal of Materials Processing Technology, 2015, 215, 151-158.	6.3	18
31	Influence of Grain Size on Electrically Assisted Tensile Behavior of Ti-6Al-4V Alloy. Journal of Materials Engineering and Performance, 2016, 25, 4514-4520.	2.5	18
32	Mechanism of the twisting in incremental sheet forming process. Journal of Materials Processing Technology, 2020, 276, 116396.	6.3	18
33	Experimental and numerical investigation of laminated steel sheet in V-bending process considering nonlinear visco-elasticity of polymer layer. Journal of Materials Processing Technology, 2012, 212, 36-45.	6.3	17
34	Die wear prediction by defining three-stage coefficient K for AHSS sheet metal forming process. International Journal of Advanced Manufacturing Technology, 2013, 69, 797-803.	3.0	17
35	Effect of Pulse Current on the Tensile Deformation of SUS304 Stainless Steel. Journal of Materials Engineering and Performance, 2015, 24, 5065-5070.	2.5	17
36	Simulating sheet metal double-sided hydroforming by using thick shell element. Journal of Materials Processing Technology, 2015, 221, 13-20.	6.3	17

#	Article	IF	CITATIONS
37	Superplastic deformation behavior of Ti-55 alloy without and with 0.1 wt%H addition. Materials Science & Department of Science	5.6	17
38	Springback prediction and compensation for the third generation of UHSS stamping based on a new kinematic hardening model and inertia relief approach. International Journal of Advanced Manufacturing Technology, 2017, 90, 875-885.	3.0	17
39	Novel strategies to reduce the springback for double-sided incremental forming. International Journal of Advanced Manufacturing Technology, 2018, 96, 973-979.	3.0	17
40	Investigations on the deformation mechanism of a novel three-sheet incremental forming. Journal of Materials Processing Technology, 2020, 281, 116619.	6.3	16
41	Low-temperature superplastic gas bulging of Ti-55 alloy by hydrogen addition. International Journal of Hydrogen Energy, 2018, 43, 12455-12459.	7.1	15
42	A new void coalescence mechanism during incremental sheet forming: Ductile fracture modeling and experimental validation. Journal of Materials Processing Technology, 2021, 298, 117319.	6.3	15
43	A new flow stress model based on Arrhenius equation to track hardening and softening behaviors of Ti6Al4V alloy. Rare Metals, 2018, 37, 1035-1045.	7.1	14
44	Stress Relaxation in Tensile Deformation of 304 Stainless Steel. Journal of Materials Engineering and Performance, 2017, 26, 630-635.	2.5	13
45	Influence of curvature variation on edge stretchability in hole expansion and stretch flanging of advanced high-strength steel. International Journal of Advanced Manufacturing Technology, 2016, 86, 1083-1094.	3.0	12
46	Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment. Materials Characterization, 2019, 157, 109919.	4.4	12
47	A novel two-stage friction stir-assisted incremental sheet forming method for uniform microstructure and enhanced properties in aluminum alloys. International Journal of Machine Tools and Manufacture, 2022, 180, 103928.	13.4	12
48	Numerical simulation of friction stir-assisted incremental forming with synchronous bonding of heterogeneous sheet metals. International Journal of Advanced Manufacturing Technology, 2020, 106, 2747-2763.	3.0	11
49	Investigations on deformation mechanism of double-sided incremental sheet forming with synchronous thermomechanical steel-aluminum alloy bonding. Journal of Materials Processing Technology, 2021, 294, 117147.	6.3	11
50	A New Method to Calculate Threshold Values of Ductile Fracture Criteria for Advanced High-Strength Sheet Blanking. Journal of Materials Engineering and Performance, 2014, 23, 1296-1306.	2.5	10
51	In Situ TEM Observation on Martensitic Transformation during Tensile Deformation of SUS304 Metastable Austenitic Stainless Steel. Acta Metallurgica Sinica (English Letters), 2015, 28, 302-306.	2.9	10
52	Role of thermal cycle in joining Ti-6Al-4V and Ti2AlNb-based alloys through diffusion bonding and post heat treatment. Materials Characterization, 2019, 156, 109830.	4.4	10
53	Experimental Investigation on Friction-Stir-Assisted Incremental Forming with Synchronous Bonding of Aluminum Alloy and Steel Sheets. Journal of Materials Engineering and Performance, 2020, 29, 750-759.	2.5	10
54	Evaluation of the forming limit of incremental sheet forming based on ductile damage. Journal of Materials Processing Technology, 2021, 287, 116497.	6.3	10

#	Article	IF	CITATIONS
55	Effect of grain size on the superplastic deformation behavior of Ti-55 alloy. Procedia Engineering, 2017, 207, 1880-1885.	1.2	9
56	Characterization of material flow in friction stir-assisted incremental forming with synchronous bonding of dissimilar sheet metals. International Journal of Advanced Manufacturing Technology, 2020, 109, 2523-2534.	3.0	8
57	Static softening characteristics and static recrystallization kinetics of aluminum alloy A6082 after hot deformation. Journal of Shanghai Jiaotong University (Science), 2010, 15, 307-312.	0.9	7
58	Microstructure and performance evaluations on Q&P hot stamping parts of several UHSS sheet metals. Science China Technological Sciences, 2017, 60, 1692-1701.	4.0	7
59	Ultrafine Grain Refinement and Superplasticity of Ti-55 Alloy Obtained by Hydrogen Absorption and Desorption. Journal of Materials Engineering and Performance, 2018, 27, 3472-3477.	2.5	7
60	Tensile deformation behavior of coarse-grained Ti-55 titanium alloy with different hydrogen additions. Rare Metals, 2021, 40, 2092-2098.	7.1	7
61	Investigations on the forming characteristics of a novel flexible incremental sheet forming method for low-ductility metals at room temperature. Journal of Materials Processing Technology, 2022, 301, 117456.	6.3	7
62	Investigations on a novel quadratic spiral tool path and its effect on incremental sheet forming process. International Journal of Advanced Manufacturing Technology, 2019, 103, 2953-2964.	3.0	6
63	Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals. International Journal of Advanced Manufacturing Technology, 2020, 107, 2177-2187.	3.0	6
64	Dynamic recrystallization and solute precipitation during friction stir assisted incremental forming of AA2024 sheet. Materials Characterization, 2021, 174, 111046.	4.4	6
65	Geometric compensation for automotive stamping die design integrating structure deflection and blank thinning. International Journal of Advanced Manufacturing Technology, 2013, 66, 1449-1456.	3.0	5
66	Experimental investigations on the forming mechanism of a new incremental stretch-flanging strategy with a featured tool. International Journal of Advanced Manufacturing Technology, 2017, 92, 2953-2964.	3.0	5
67	Diffusion bonding criterion based on real surface asperities: Modeling and validation. Journal of Manufacturing Processes, 2020, 57, 477-487.	5.9	5
68	A new tool path with point contact and its effect on incremental sheet forming process. International Journal of Advanced Manufacturing Technology, 2020, 110, 1515-1525.	3.0	5
69	Numerical Simulation on Edge Crack of Advanced High-Strength Steel Considering Blanking Induced Damage. Journal of Materials Engineering and Performance, 2020, 29, 8286-8293.	2.5	5
70	Dynamic recrystallization behavior and microstructural evolution in SPHC steel. Journal of Shanghai Jiaotong University (Science), 2010, 15, 301-306.	0.9	4
71	Fractional Cooling Strategy of the Hot-Stamping Process and Its Influence on Formability and Mechanical Properties of Ultra-High-Strength Steel Parts. Acta Metallurgica Sinica (English Letters), 2019, 32, 343-351.	2.9	4
72	New approach for modeling flow stress of aluminum alloy 6A10 considering temperature variation. Transactions of Nonferrous Metals Society of China, 2010, 20, 1482-1487.	4.2	3

#	Article	IF	CITATIONS
73	Numerical simulation and experiment study on the nuclear fuel spacer grid stamping of Inconel 718. Procedia Engineering, 2017, 207, 1534-1539.	1.2	3
74	Investigation of the Hot Stamping Process for TRIP Steel with High Strength and High Ductility. Journal of Materials Engineering and Performance, 2019, 28, 6125-6134.	2.5	3
75	An effective thermal-mechanical coupling method for simulating friction stir-assisted incremental aluminum alloy sheet forming. International Journal of Advanced Manufacturing Technology, 2020, 107, 3449-3458.	3.0	3
76	Investigations on the process window for friction stir assisted double-sided incremental forming with synchronous bonding of steel and aluminum alloy sheets. International Journal of Material Forming, 2022, 15, 1.	2.0	3
77	The numerical method for predicting failure in single point incremental forming using a new anisotropic ductile fracture model. Procedia Manufacturing, 2019, 29, 45-52.	1.9	2
78	Global-cumulative incremental hole-flanging by tools with complementary-shape cross section. International Journal of Material Forming, 2019, 12, 899-906.	2.0	2
79	Analytical approaches to describe diffusion bonding of similar and dissimilar materials. Science and Technology of Welding and Joining, 2020, 25, 661-668.	3.1	2
80	An optimum process window to preferable microstructure distribution and improved macroscopic property for friction stir–assisted incremental aluminum alloy sheet forming. International Journal of Advanced Manufacturing Technology, 2021, 115, 1589.	3.0	2
81	Experimental and Numerical Investigations of Wear Resistance Characteristics of XCr13 during Advanced High-Strength Steel Stamping. Journal of Materials Engineering and Performance, 2021, 30, 4484-4493.	2.5	1
82	Interfacial quality prediction model for Al/steel sheets during friction stir–assisted double-sided incremental forming with synchronous bonding. International Journal of Advanced Manufacturing Technology, 2022, 119, 733-743.	3.0	1
83	Flow stress model of stainless steel 0Cr13Ni5Mo at elevated temperature. Journal of Shanghai Jiaotong University (Science), 2008, 13, 717-720.	0.9	0
84	Investigations on a novel double-surface single point incremental forming process for sharp-corner features. International Journal of Advanced Manufacturing Technology, 0, , .	3.0	0